Publication

Non-Linear EEG Features for Odor Pleasantness Recognition

Abstract

Since olfactory sense is gaining ground in multimedia applications, it is important to understand the way odor pleasantness is perceived. Although several studies have explored the way odor pleasantness perception influences the power spectral density of the electroencephalography (EEG) in various brain regions, there are still no studies that investigate the way odor pleasantness perception affects the non-linear temporal variations of EEG. In this study two non-linear metrics are used, namely permutation entropy, and dimension of minimal covers, to explore the possibility of recognizing odor pleasantness perception from the non-linear properties of EEG signals. The results reveal that it is possible to discriminate between pleasant and unpleasant odors from the EEG nonlinear properties, using a Linear Discriminant Analysis classifier with cross-validation.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.