Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Program generators for high performance libraries are an appealing solution to the recurring problem of porting and optimizing code with every new processor generation, but only few such generators exist to date. This is due to not only the difficulty of the design, but also of the actual implementation, which often results in an ad-hoc collection of standalone programs and scripts that are hard to extend, maintain, or reuse. In this paper we ask whether and which programming language concepts and features are needed to enable a more systematic construction of such generators. The systematic approach we advocate extrapolates from existing generators: a) describing the problem and algorithmic knowledge using one, or several, domain-specific languages (DSLs), b) expressing optimizations and choices as rewrite rules on DSL programs, c) designing data structures that can be configured to control the type of code that is generated and the data representation used, and d) using autotuning to select the best-performing alternative. As a case study, we implement a small, but representative subset of Spiral in Scala using the Lightweight Modular Staging (LMS) framework. The first main contribution of this paper is the realization of c) using type classes to abstract over staging decisions, i.e. which pieces of a computation are performed immediately and for which pieces code is generated. Specifically, we abstract over different complex data representations jointly with different code representations including generating loops versus unrolled code with scalar replacement-a crucial and usually tedious performance transformation. The second main contribution is to provide full support for a) and d) within the LMS framework: we extend LMS to support translation between different DSLs and autotuning through search.
Felix Schürmann, Pramod Shivaji Kumbhar, Omar Awile, Ioannis Magkanaris
Martin Odersky, Sébastien Jean R Doeraene, Nicolas Alexander Stucki