Scaling in the quantum Hall regime of graphene Corbino devices
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The growing research on two-dimensional materials reveals their exceptional physical properties and enormous potential for future applications and investigation of advanced physics phenomena. They represent the ultimate limit in terms of active channel thi ...
In this thesis, angular resolved photoemission spectroscopy (ARPES) is used to study the electronic structure of different two-dimensional electron systems (2DES). This technique is very surface sensitive and the most direct method to probe the surface ban ...
During the past decade, graphene --- a monolayer of carbon atoms --- has attracted enormous interest for its use in nanoelectronic device applications. The absence of bandgap, however, has stalled its use both in logic (inability to turn off) and radio fre ...
This thesis is devoted to the computational study of the electronic and transport properties of monolayer and bilayer graphene in the presence of disorder arising from both topological and point defects. Among the former, we study grain boundaries in monol ...
Graphene, as a semimetal with the largest known thermal conductivity, is an ideal system to study the interplay between electronic and lattice contributions to thermal transport. While the total electrical and thermal conductivity have been extensively inv ...
We report a full study of graphene synthesis by CVD on Cu surface. Two CVD methods have been developed. The first is a static one, which yields monolayer of graphene at low pressure of methane in 3 minutes at 1000 C. The second one is an equimolar method w ...
We characterize the thermal conductivity of graphite, monolayer graphene, graphane, fluorographane, and bilayer graphene, solving exactly the Boltzmann transport equation for phonons, with phononphonon collision rates obtained from density functional pertu ...
We report measurements of Shubnikov-de Haas oscillations in single crystals of BiTeCl at magnetic fields up to 31 T and at temperatures as low as 0.4 K. Two oscillation frequencies were resolved at the lowest temperatures, F-1 = 65 +/- 4 T and F-2 = 156 +/ ...
We present a first-principles study of the temperature- and density-dependent intrinsic electrical resistivity of graphene. We use density-functional theory and density-functional perturbation theory together with very accurate Wannier interpolations to co ...
The lifting of the fourfold degeneracy of the zeroth Landau level in graphene under high magnetic fields has been the subject of numerous experimental studies, and attributed to various mechanisms such as pure spin splitting, spin splitting combined with s ...