Protein structure predictionProtein structure prediction is the inference of the three-dimensional structure of a protein from its amino acid sequence—that is, the prediction of its secondary and tertiary structure from primary structure. Structure prediction is different from the inverse problem of protein design. Protein structure prediction is one of the most important goals pursued by computational biology; and it is important in medicine (for example, in drug design) and biotechnology (for example, in the design of novel enzymes).
Electron crystallographyElectron crystallography is a method to determine the arrangement of atoms in solids using a transmission electron microscope (TEM). It can involve the use of high-resolution transmission electron microscopy images, electron diffraction patterns including convergent-beam electron diffraction or combinations of these. It has been successful in determining some bulk structures, and also surface structures. Two related methods are low-energy electron diffraction which has solved the structure of many surfaces, and reflection high-energy electron diffraction which is used to monitor surfaces often during growth.
Lipoic acidLipoic acid (LA), also known as α-lipoic acid, alpha-lipoic acid (ALA) and thioctic acid, is an organosulfur compound derived from caprylic acid (octanoic acid). ALA is made in animals normally, and is essential for aerobic metabolism. It is also manufactured and is available as a dietary supplement in some countries where it is marketed as an antioxidant, and is available as a pharmaceutical drug in other countries. Lipoate is the conjugate base of lipoic acid, and the most prevalent form of LA under physiological conditions.
Ligand efficiencyLigand efficiency is a measurement of the binding energy per atom of a ligand to its binding partner, such as a receptor or enzyme. Ligand efficiency is used in drug discovery research programs to assist in narrowing focus to lead compounds with optimal combinations of physicochemical properties and pharmacological properties. Mathematically, ligand efficiency (LE) can be defined as the ratio of Gibbs free energy (ΔG) to the number of non-hydrogen atoms of the compound: LE = -(ΔG)/N where ΔG = −RTlnKi and N is the number of non-hydrogen atoms.
Cystathionine gamma-lyaseThe enzyme cystathionine γ-lyase (EC 4.4.1.1, CTH or CSE; also cystathionase; systematic name L-cystathionine cysteine-lyase (deaminating; 2-oxobutanoate-forming)) breaks down cystathionine into cysteine, 2-oxobutanoate (α-ketobutyrate), and ammonia: L-cystathionine + H2O = L-cysteine + 2-oxobutanoate + NH3 (overall reaction) (1a) L-cystathionine = L-cysteine + 2-aminobut-2-enoate (1b) 2-aminobut-2-enoate = 2-iminobutanoate (spontaneous) (1c) 2-iminobutanoate + H2O = 2-oxobutanoate + NH3 (spontaneous) Pyridoxal phosphate is a prosthetic group of this enzyme.