Phonon-limited resistivity of graphene by first-principles calculations: Electron-phonon interactions, strain-induced gauge field, and Boltzmann equation
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In order to deeply understand the high temperature deformation behaviors of Cu-0.23%Al2O3 (volume fraction) alloy, the changes of flow stress and microstructure for this alloy after deformation at high temperatures were investigated by using the Gleeble-15 ...
We uncover the constitutive relation of graphene and probe the physics of its optical phonons by studying its Raman spectrum as a function of uniaxial strain. We find that the doubly degenerate E(2g) optical mode splits in two components: one polarized alo ...
Single crystal deformation unveiling the characteristics of crystal glide and the role of defect propagation herein has been a matter of intense research more than 60 years ago. A manifold of different mechanical testing methods and crystal qualities were ...
Strain engineering is used to maintain Moore's Law in scaled CMOS devices and as a technology booster for More-than-Moore devices in the nanoelectronics era. Strain is crucial because of its ability to increase electron and hole mobilities in Si. However, ...
We use the truncated Wigner approximation to derive stochastic classical field equations for the description of polariton condensates. Our equations are shown to reduce to the Boltzmann equation in the limit of low polariton density. Monte Carlo simulation ...
We report inelastic x-ray scattering experiments on the lattice dynamics in SmFeAsO and superconducting SmFeAsO0.60F0.35 single crystals. Particular attention was paid to the dispersions along the [100] direction of three optical modes close to 23 meV, pol ...
Starting from the quantum-Boltzmann equation derived in a previous paper, we study the irreversible evolution of an electron gas in the one-particle phase space. The connection with phase space is established by expressing one-electron states in terms of t ...
We study the evolution of a many-electron system that is confined in a finite spatial region and coupled to a statistical environment. The latter may be composed of several independent bath subsystems, which are held at some statistical equilibrium. From t ...
Density-functional theory is used to model interstitial iron and its complexes with aluminum in Si-rich SiGe alloys with Ge concentration up to 8%. Both short-range and long-range defect-Ge interactions are considered. It is found that Fe prefers Si-rich r ...
Nanocrystalline metals have been an area of great interest in recent years due to their enhanced characteristics. One of the most striking is implied by the Hall-Petch relation: with decreasing grain size the material becomes stronger. This promise is fulf ...