Electric-Field-Induced Skyrmion Distortion and Giant Lattice Rotation in the Magnetoelectric Insulator Cu2OSeO3
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Magnetic skyrmions are whirl-like spin configurations with particle-like properties protected by non-trivial topology. Due to their unique spin structures and dynamical properties, they have attracted tremendous interests over the past decade, from fundame ...
Co-Zn-Mn chiral cubic magnets display versatile magnetic skyrmion phases, including equilibrium phases stable far above and far below room temperature, and the facile creation of robust far-from-equilibrium skyrmion states. In this system, compositional di ...
This thesis is devoted to the investigation of static and dynamic properties of
two different sets of quantum magnets with neutron scattering techniques and
the help of linear spin wave theory.
Both systems are copper-based with spin-1/2, which makes them ...
Spin dynamics in skyrmion hosting materials provide novel functionality in magnonics because of the formation of a novel magnon band structure and the nanoscale sizes of magnetic skyrmions. In this thesis, we explore the spin dynamics in the chiral magnet ...
BaCuSi2O6 is a quasi-two-dimensional (2D) quantum antiferromagnet containing three different types of stacked, square-lattice bilayer hosting spin-1/2 dimers. Although this compound has been studied extensively over the last two decades, the critical appli ...
Magnetic skyrmions are vortexlike topological spin textures often observed in structurally chiral magnets with Dzyaloshinskii-Moriya interaction. Among them, Co-Zn-Mn alloys with a beta-Mn-type chiral structure host skyrmions above room temperature. In thi ...
Building on the growing evidence based on NMR, magnetization, neutron scattering, electron spin resonance, and specific heat that, under pressure, SrCu2(BO3)(2) has an intermediate phase between the dimer and the Neel phase, we study the competition betwee ...
In the three-dimensional (3D) Heisenberg model, topological point defects known as spin hedgehogs behave as emergent magnetic monopoles, i.e., quantized sources and sinks of gauge fields that couple strongly to conduction electrons, and cause unconventiona ...
AMER PHYSICAL SOC2020
We use neutron scattering to show that ferromagnetism and antiferromagnetism coexist in the low T state of the pyrochlore quantum magnet Yb2Ti2O7. While magnetic Bragg peaks evidence long-range static ferromagnetic order, inelastic scattering shows that sh ...
NATL ACAD SCIENCES2020
, , ,
Topological defects are found ubiquitously in various kinds of matter, such as vortices in type-II superconductors, and magnetic skyrmions in chiral ferromagnets. While knowledge on the static behavior of magnetic skyrmions is accumulating steadily, their ...