Huffman codingIn computer science and information theory, a Huffman code is a particular type of optimal prefix code that is commonly used for lossless data compression. The process of finding or using such a code is Huffman coding, an algorithm developed by David A. Huffman while he was a Sc.D. student at MIT, and published in the 1952 paper "A Method for the Construction of Minimum-Redundancy Codes". The output from Huffman's algorithm can be viewed as a variable-length code table for encoding a source symbol (such as a character in a file).
Packet switchingIn telecommunications, packet switching is a method of grouping data into packets that are transmitted over a digital network. Packets are made of a header and a payload. Data in the header is used by networking hardware to direct the packet to its destination, where the payload is extracted and used by an operating system, application software, or higher layer protocols. Packet switching is the primary basis for data communications in computer networks worldwide.
Fountain codeIn coding theory, fountain codes (also known as rateless erasure codes) are a class of erasure codes with the property that a potentially limitless sequence of encoding symbols can be generated from a given set of source symbols such that the original source symbols can ideally be recovered from any subset of the encoding symbols of size equal to or only slightly larger than the number of source symbols. The term fountain or rateless refers to the fact that these codes do not exhibit a fixed code rate.
AlgorithmIn mathematics and computer science, an algorithm (ˈælɡərɪðəm) is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algorithms are used as specifications for performing calculations and data processing. More advanced algorithms can use conditionals to divert the code execution through various routes (referred to as automated decision-making) and deduce valid inferences (referred to as automated reasoning), achieving automation eventually.
Packet lossPacket loss occurs when one or more packets of data travelling across a computer network fail to reach their destination. Packet loss is either caused by errors in data transmission, typically across wireless networks, or network congestion. Packet loss is measured as a percentage of packets lost with respect to packets sent. The Transmission Control Protocol (TCP) detects packet loss and performs retransmissions to ensure reliable messaging.
Packet analyzerA packet analyzer, also known as packet sniffer, protocol analyzer, or network analyzer, is a computer program or computer hardware such as a packet capture appliance that can analyze and log traffic that passes over a computer network or part of a network. Packet capture is the process of intercepting and logging traffic. As data streams flow across the network, the analyzer captures each packet and, if needed, decodes the packet's raw data, showing the values of various fields in the packet, and analyzes its content according to the appropriate RFC or other specifications.
Automatic repeat requestAutomatic repeat request (ARQ), also known as automatic repeat query, is an error-control method for data transmission that uses acknowledgements (messages sent by the receiver indicating that it has correctly received a message) and timeouts (specified periods of time allowed to elapse before an acknowledgment is to be received) to achieve reliable data transmission over an unreliable communication channel. ARQ is appropriate if the communication channel has varying or unknown capacity.
Viterbi algorithmThe Viterbi algorithm is a dynamic programming algorithm for obtaining the maximum a posteriori probability estimate of the most likely sequence of hidden states—called the Viterbi path—that results in a sequence of observed events, especially in the context of Markov information sources and hidden Markov models (HMM). The algorithm has found universal application in decoding the convolutional codes used in both CDMA and GSM digital cellular, dial-up modems, satellite, deep-space communications, and 802.
Channel capacityChannel capacity, in electrical engineering, computer science, and information theory, is the tight upper bound on the rate at which information can be reliably transmitted over a communication channel. Following the terms of the noisy-channel coding theorem, the channel capacity of a given channel is the highest information rate (in units of information per unit time) that can be achieved with arbitrarily small error probability. Information theory, developed by Claude E.
Variable-length codeIn coding theory, a variable-length code is a code which maps source symbols to a variable number of bits. The equivalent concept in computer science is bit string. Variable-length codes can allow sources to be compressed and decompressed with zero error (lossless data compression) and still be read back symbol by symbol. With the right coding strategy an independent and identically-distributed source may be compressed almost arbitrarily close to its entropy.