Two-Level Discretization Techniques For Ground State Computations Of Bose-Einstein Condensates
Related publications (46)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this work we extend to the Stokes problem the Discontinuous Galerkin Reduced Basis Element (DGRBE) method introduced in [1]. By this method we aim at reducing the computational cost for the approximation of a parametrized Stokes problem on a domain part ...
In this work we combine the framework of the Reduced Basis method (RB) with the framework of the Localized Orthogonal Decomposition (LOD) in order to solve parametrized elliptic multiscale problems. The idea of the LOD is to split a high dimensional Finite ...
A reduced basis Darcy-Stokes finite element heterogeneous multiscale method (RB-DS-FE-HMM) is proposed for the Stokes problem in porous media. The multiscale method is based on the Darcy-Stokes finite element heterogeneous multiscale method (DS-FE-HMM) int ...
We consider the solution of large-scale symmetric eigenvalue problems for which it is known that the eigenvectors admit a low-rank tensor approximation. Such problems arise, for example, from the discretization of high-dimensional elliptic PDE eigenvalue p ...
This work considers eigenvalue problems that are nonlinear in the eigenvalue parameter. Given such a nonlinear eigenvalue problem T, we are concerned with finding the minimal backward error such that T has a set of prescribed eigenvalues with prescribed al ...
We consider the numerical approximation of high order Partial Differential Equations (PDEs) defined on surfaces in the three dimensional space, with particular emphasis on closed surfaces. We consider computational domains that can be represented by B-spli ...
We consider the numerical approximation of high order Partial Differential Equations (PDEs) defined on surfaces in the three dimensional space, with particular emphasis on closed surfaces. We consider computational domains that can be represented by B-spli ...
In this paper, we extend the generalized approximate message passing (G-AMP) approach, originally proposed for high-dimensional generalized-linear regression in the context of compressive sensing, to the generalized-bilinear case, which enables its applica ...
Institute of Electrical and Electronics Engineers2014
We present some recent advances and improvements in shape parametrisation techniques of interfaces for reduced-order modelling with special attention to fluid-structure interaction problems and the management of structural deformations, namely, to represen ...
We present a nonlinear eigenvalue solver enabling the calculation of bound solutions of the Schrodinger equation in a system with contacts. We discuss how the imposition of contacts leads to a nonlinear eigenvalue problem and discuss the numerics for a one ...