The crack growth across a boundary between two colonies, i.e. regions of differing lamellar orientation, in two-phase lamellar Ti-Al is studied computationally to quantify the influence of such boundaries on toughening, as observed in recent in-situ fracture studies. The model represents the lamellar Ti-Al as gamma-phase lamellae, modeled as bulk elastic-viscoplastic material, interspersed with alpha(2)-phase lamellae for which either the alpha(2) phase or alpha(2)-gamma interface are considered as weak planes for fracture. Computationally, dynamic plane-strain analyses of the crack propagation are carried out. Fracture in both phases is accommodated using a cohesive surface formulation that permits crack growth and nucleation to evolve naturally. Results show that the lamellar misorientation across a boundary, the thickness of the boundary region, and the spatial offset between successive weak lamellae, all play a role in inhibiting crack propagation across the boundary. The gamma phase plasticity has a comparatively small influence on the toughening. The enhancements in applied stress intensities required to nucleate cracks across the colony boundary are comparable to those observed experimentally when the weak-plane spacing is comparable to the spacing of microcracks and crack plane offsets observed experimentally. (C) 2002 Elsevier Science B.V. All rights reserved.
Brice Tanguy Alphonse Lecampion, Andreas Möri
Brice Tanguy Alphonse Lecampion, Carlo Peruzzo, Barnaby Padraig Fryer
Alexandra Roma Larisa Kushnir, Tao Xu, Michael Heap