Multi-scale plasticity modeling: Coupled discrete dislocation and continuum crystal plasticity
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The intrinsic lattice resistance to dislocation motion, or Peierls stress, depends on the core structure of the dislocation and is one essential feature controlling plastic anisotropy in materials such as HCP Zn, Mg, and Ti. Here, we implement an anisotrop ...
Despite decades of study, the atomic-scale mechanisms of fatigue crack growth remain elusive. Here we use the coupled atomistic–discrete dislocation method, a multiscale simulation method, to examine the influence of dislocation glide resistance on near-th ...
A quantum-continuum multiscale coupling of Kohn-Sham density functional theory to continuum material is presented that can handle mechanics problems in metals when long-range stress fields are present, such as occurs for dislocations and cracks. The method ...
Seeking light and transparent bridge designs, engineers and architects have found an efficient and artistic way to fulfill their requirements: steel tubular bridges. In these modern tubular truss bridges, welded K-joints have been shown to be critically su ...
This work addresses the behaviour of replicated microcellular pure aluminium under multiaxial stress states and in the presence of stress and strain localization sites. Processing of the foam was conducted in-house, using the replication process. The main ...
This paper investigates different tensile fracture initiation criteria on the plane-strain configuration of a defect-free openhole wellbore. It aims to model the effect of the internal pressurization of a wellbore drilled in the direction of one of the pri ...
Many phenomena in crystalline metals such as friction, nano-indentation and ductile fracture are plasticity-driven and poorly understood. The physical complexity is further increased by the inherently multiscale nature of contact and fracture [1]. This stu ...
The application of discrete dislocation (DD) dynamics methods to study materials with realistic yield stresses and realistic cohesive strengths requires new algorithms. Here, limitations of the standard algorithms are discussed, and then new algorithms to ...
Degradation of mechanical properties due to nanometric irradiation induced defects is one of the challenging issues in designing ferritic materials for future nuclear fusion reactors. Various types of defects, namely dislocation loops, voids, He bubbles an ...