Publication

Multimetallic Cooperativity in Uranium-Mediated CO2 Activation

Marinella Mazzanti
2014
Journal paper
Abstract

The metal-mediated redox transformation of CO2 in mild conditions is an area of great current interest. The role of cooperativity between a reduced metal center and a Lewis acid center in small-molecule activation is increasingly recognized, but has not so far been investigated for f-elements. Here we show that the presence of potassium at a U, K site supported by sterically demanding tris(tert-butoxy)siloxide ligands induces a large cooperative effect in the reduction of CO2. Specifically, the ion pair complex [K(18c6)][U(OSi(OtBu)3)4], 1, promotes the selective reductive disproportionation of CO2 to yield CO and the mononuclear uranium(IV) carbonate complex [U(OSi(O tBu)3)4(u-K2:K1-CO 3)K2(18c6)], 4. In contrast, the heterobimetallic complex [U(OSi(OtBu)3)4K], 2, promotes the potassium-assisted two-electron reductive cleavage of CO2, yielding CO and the U(V) terminal oxo complex [UO(OSi(OtBu)3) 4K], 3, thus providing a remarkable example of two-electron transfer in U(III) chemistry. DFT studies support the presence of a cooperative effect of the two metal centers in the transformation of CO2. © 2014 American Chemical Society.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.