Publication

On Non-cooperative Genomic Privacy

Abstract

Over the last few years, the vast progress in genome sequencing has highly increased the availability of genomic data. Today, individuals can obtain their digital genomic sequences at reasonable prices from many online service providers. Individuals can store their data on personal devices, reveal it on public online databases, or share it with third parties. Yet, it has been shown that genomic data is very privacy-sensitive and highly correlated between relatives. Therefore, individuals' decisions about how to manage and secure their genomic data are crucial. People of the same family might have very different opinions about (i) how to protect and (ii) whether or not to reveal their genome. We study this tension by using a game-theoretic approach. First, we model the interplay between two purely-selfish family members. We also analyze how the game evolves when relatives behave altruistically. We define closed-form Nash equilibria in different settings. We then extend the game to N players by means of multi-agent influence diagrams that enable us to efficiently compute Nash equilibria. Our results notably demonstrate that altruism does not always lead to a more efficient outcome in genomic-privacy games. They also show that, if the discrepancy between the genome-sharing benefits that players perceive is too high, they will follow opposite sharing strategies, which has a negative impact on the familial utility.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related concepts (32)
Whole genome sequencing
Whole genome sequencing (WGS), also known as full genome sequencing, complete genome sequencing, or entire genome sequencing, is the process of determining the entirety, or nearly the entirety, of the DNA sequence of an organism's genome at a single time. This entails sequencing all of an organism's chromosomal DNA as well as DNA contained in the mitochondria and, for plants, in the chloroplast. Whole genome sequencing has largely been used as a research tool, but was being introduced to clinics in 2014.
DNA sequencing
DNA sequencing is the process of determining the nucleic acid sequence – the order of nucleotides in DNA. It includes any method or technology that is used to determine the order of the four bases: adenine, guanine, cytosine, and thymine. The advent of rapid DNA sequencing methods has greatly accelerated biological and medical research and discovery. Knowledge of DNA sequences has become indispensable for basic biological research, DNA Genographic Projects and in numerous applied fields such as medical diagnosis, biotechnology, forensic biology, virology and biological systematics.
Shotgun sequencing
In genetics, shotgun sequencing is a method used for sequencing random DNA strands. It is named by analogy with the rapidly expanding, quasi-random shot grouping of a shotgun. The chain-termination method of DNA sequencing ("Sanger sequencing") can only be used for short DNA strands of 100 to 1000 base pairs. Due to this size limit, longer sequences are subdivided into smaller fragments that can be sequenced separately, and these sequences are assembled to give the overall sequence.
Show more
Related publications (48)

Inborn errors of type I interferon immunity in patients with symptomatic acute hepatitis E

Jacques Fellay

Background and Aims:The clinical spectrum of human infection by HEV ranges from asymptomatic to severe acute hepatitis. Furthermore, HEV can cause diverse neurological manifestations, especially Parsonage-Turner syndrome. Here, we used a large-scale human ...
Philadelphia2023

An Introduction to MPEG-G: The First Open ISO/IEC Standard for the Compression and Exchange of Genomic Sequencing Data

Marco Mattavelli

The development and progress of high-throughput sequencing technologies have transformed the sequencing of DNA from a scientific research challenge to practice. With the release of the latest generation of sequencing machines, the cost of sequencing a whol ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2021

Genome Sequence Alignment - Design Space Exploration for Optimal Performance and Energy Architectures

David Atienza Alonso, Marina Zapater Sancho, Yasir Mahmood Qureshi, José Manuel Herruzo Ruiz

Next generation workloads, such as genome sequencing, have an astounding impact in the healthcare sector. Sequence alignment, the first step in genome sequencing, has experienced recent breakthroughs, which resulted in next generation sequencing (NGS). As ...
2020
Show more
Related MOOCs (6)
Neuroscience Reconstructed: Cell Biology
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Neuroscience Reconstructed: Cell Biology
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Neuroscience Reconstructed: Genetics and Brain Development
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.