**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Optimal expulsion and optimal confinement of a Brownian particle with a switching cost

Abstract

We solve two stochastic control problems in which a player tries to minimize or maximize the exit time from an interval of a Brownian particle, by controlling its drift. The player can change from one drift to another but is subject to a switching cost. In each problem, the value function is written as the solution of a free boundary problem involving second order ordinary differential equations, in which the unknown boundaries are found by applying the principle of smooth fit. For both problems, we compute the value function, we exhibit the optimal strategy and we prove its generic uniqueness. (C) 2014 Elsevier B.V. All rights reserved.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts

Loading

Related publications

Loading

Related MOOCs

Loading

Related MOOCs

Related concepts (7)

Related publications (1)

No results

Brownian motion

Brownian motion is the random motion of particles suspended in a medium (a liquid or a gas). This motion pattern typically consists of random fluctuations in a particle's position inside a fluid sub-domain, followed by a relocation to another sub-domain. Each relocation is followed by more fluctuations within the new closed volume. This pattern describes a fluid at thermal equilibrium, defined by a given temperature. Within such a fluid, there exists no preferential direction of flow (as in transport phenomena).

Stochastic control

Stochastic control or stochastic optimal control is a sub field of control theory that deals with the existence of uncertainty either in observations or in the noise that drives the evolution of the system. The system designer assumes, in a Bayesian probability-driven fashion, that random noise with known probability distribution affects the evolution and observation of the state variables. Stochastic control aims to design the time path of the controlled variables that performs the desired control task with minimum cost, somehow defined, despite the presence of this noise.

Ordinary differential equation

In mathematics, an ordinary differential equation (ODE) is a differential equation (DE) dependent on only a single independent variable. As with other DE, its unknown(s) consists of one (or more) function(s) and involves the derivatives of those functions. The term "ordinary" is used in contrast with partial differential equations which may be with respect to one independent variable. A linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form where a_0(x), .

Loading

The topic of this thesis is the study of several stochastic control problems motivated by sailing races. The goal is to minimize the travel time between two locations, by selecting the fastest route i