We present here H-1-detected triple-resonance H/N/C experiments that incorporate CO-CA and CA-CB out-and-back scalar-transfer blocks optimized for robust resonance assignment in biosolids under ultra-fast magic-angle spinning (MAS). The first experiment, (H)(CO)CA(CO)NH, yields H-1-detected inter-residue correlations, in which we record the chemical shifts of the CA spins in the first indirect dimension while during the scalar-transfer delays the coherences are present only on the longer-lived CO spins. The second experiment, (H)(CA)CB(CA)NH, correlates the side-chain CB chemical shifts with the NH of the same residue. These high sensitivity experiments are demonstrated on both fully-protonated and 100 %-H-N back-protonated perdeuterated microcrystalline samples of Acinetobacter phage 205 (AP205) capsids at 60 kHz MAS.
Geoffrey Bodenhausen, Fabien Ferrage
David Lyndon Emsley, Daria Torodii, Pinelopi Moutzouri, Bruno Simões de Almeida
David Lyndon Emsley, Marinella Mazzanti, Anne-Sophie Chauvin, Dominik Józef Kubicki, Gabriele Stevanato, Georges Guévork Jean-Jacques Menzildjian