Internet privacyInternet privacy involves the right or mandate of personal privacy concerning the storage, re-purposing, provision to third parties, and display of information pertaining to oneself via the Internet. Internet privacy is a subset of data privacy. Privacy concerns have been articulated from the beginnings of large-scale computer sharing and especially relate to mass surveillance enabled by the emergence of computer technologies. Privacy can entail either personally identifiable information (PII) or non-PII information such as a site visitor's behaviour on a website.
File sharingFile sharing is the practice of distributing or providing access to digital media, such as computer programs, multimedia (audio, images and video), documents or electronic books. Common methods of storage, transmission and dispersion include removable media, centralized servers on computer networks, Internet-based hyperlinked documents, and the use of distributed peer-to-peer networking. File sharing technologies, such as BitTorrent, are integral to modern media piracy, as well as the sharing of scientific data and other free content.
Active usersActive users is a software performance metric that is commonly used to measure the level of engagement for a particular software product or object, by quantifying the number of active interactions from users or visitors within a relevant range of time (daily, weekly and monthly). The metric has many uses in software management such as in social networking services, online games, or mobile apps, in web analytics such as in web apps, in commerce such as in internet banking and in academia, such as in user behavior analytics and predictive analytics.
Active learning (machine learning)Active learning is a special case of machine learning in which a learning algorithm can interactively query a user (or some other information source) to label new data points with the desired outputs. In statistics literature, it is sometimes also called optimal experimental design. The information source is also called teacher or oracle. There are situations in which unlabeled data is abundant but manual labeling is expensive. In such a scenario, learning algorithms can actively query the user/teacher for labels.
Automated machine learningAutomated machine learning (AutoML) is the process of automating the tasks of applying machine learning to real-world problems. AutoML potentially includes every stage from beginning with a raw dataset to building a machine learning model ready for deployment. AutoML was proposed as an artificial intelligence-based solution to the growing challenge of applying machine learning. The high degree of automation in AutoML aims to allow non-experts to make use of machine learning models and techniques without requiring them to become experts in machine learning.
Group decision-makingGroup decision-making (also known as collaborative decision-making or collective decision-making) is a situation faced when individuals collectively make a choice from the alternatives before them. The decision is then no longer attributable to any single individual who is a member of the group. This is because all the individuals and social group processes such as social influence contribute to the outcome. The decisions made by groups are often different from those made by individuals.
Information privacyInformation privacy is the relationship between the collection and dissemination of data, technology, the public expectation of privacy, contextual information norms, and the legal and political issues surrounding them. It is also known as data privacy or data protection. Data privacy is challenging since attempts to use data while protecting an individual's privacy preferences and personally identifiable information. The fields of computer security, data security, and information security all design and use software, hardware, and human resources to address this issue.
Information architectureInformation architecture (IA) is the structural design of shared information environments; the art and science of organizing and labelling websites, intranets, online communities and software to support usability and findability; and an emerging community of practice focused on bringing principles of design, architecture and information science to the digital landscape. Typically, it involves a model or concept of information that is used and applied to activities which require explicit details of complex information systems.
Rule-based machine learningRule-based machine learning (RBML) is a term in computer science intended to encompass any machine learning method that identifies, learns, or evolves 'rules' to store, manipulate or apply. The defining characteristic of a rule-based machine learner is the identification and utilization of a set of relational rules that collectively represent the knowledge captured by the system. This is in contrast to other machine learners that commonly identify a singular model that can be universally applied to any instance in order to make a prediction.
Privacy by designPrivacy by design is an approach to systems engineering initially developed by Ann Cavoukian and formalized in a joint report on privacy-enhancing technologies by a joint team of the Information and Privacy Commissioner of Ontario (Canada), the Dutch Data Protection Authority, and the Netherlands Organisation for Applied Scientific Research in 1995. The privacy by design framework was published in 2009 and adopted by the International Assembly of Privacy Commissioners and Data Protection Authorities in 2010.