**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Tractability of interpretability via selection of group-sparse models

Abstract

Group-based sparsity models are proven instrumental in linear regression problems for recovering signals from much fewer measurements than standard compressive sensing. A promise of these models is to lead to “interpretable” signals for which we identify its constituent groups, however we show that, in general, claims of correctly identifying the groups with convex relaxations would lead to polynomial time solution algorithms for an NP-hard problem. Instead, leveraging a graph-based understanding of group models, we describe group structures which enable correct model identification in polynomial time via dynamic programming. We also show that group structures that lead to totally unimodular constraints have tractable relaxations. Finally, we highlight the non-convexity of the Pareto frontier of group-sparse approximations and what it means for tractability.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related MOOCs (6)

Related concepts (32)

Related publications (76)

Digital Signal Processing I

Basic signal processing concepts, Fourier analysis and filters. This module can
be used as a starting point or a basic refresher in elementary DSP

Digital Signal Processing II

Adaptive signal processing, A/D and D/A. This module provides the basic
tools for adaptive filtering and a solid mathematical framework for sampling and
quantization

Digital Signal Processing III

Advanced topics: this module covers real-time audio processing (with
examples on a hardware board), image processing and communication system design.

Polynomial-time reduction

In computational complexity theory, a polynomial-time reduction is a method for solving one problem using another. One shows that if a hypothetical subroutine solving the second problem exists, then the first problem can be solved by transforming or reducing it to inputs for the second problem and calling the subroutine one or more times. If both the time required to transform the first problem to the second, and the number of times the subroutine is called is polynomial, then the first problem is polynomial-time reducible to the second.

Time complexity

In computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm, supposing that each elementary operation takes a fixed amount of time to perform. Thus, the amount of time taken and the number of elementary operations performed by the algorithm are taken to be related by a constant factor.

Polynomial-time approximation scheme

In computer science (particularly algorithmics), a polynomial-time approximation scheme (PTAS) is a type of approximation algorithm for optimization problems (most often, NP-hard optimization problems). A PTAS is an algorithm which takes an instance of an optimization problem and a parameter ε > 0 and produces a solution that is within a factor 1 + ε of being optimal (or 1 – ε for maximization problems). For example, for the Euclidean traveling salesman problem, a PTAS would produce a tour with length at most (1 + ε)L, with L being the length of the shortest tour.

In this thesis, we give new approximation algorithms for some NP-hard problems arising in resource allocation and network design. As a resource allocation problem, we study the Santa Claus problem (also known as the MaxMin Fair Allocation problem) in which ...

We discuss two extensions to a recently introduced theory of arrays, which are based on considerations coming from the model theory of power structures. First, we discuss how the ordering relation on the index set can be expressed succinctly by referring t ...

Maryam Kamgarpour, Tony Alan Wood

Minimising the longest travel distance for a group of mobile robots with interchangeable goals requires knowledge of the shortest length paths between all robots and goal destinations. Determining the exact length of the shortest paths in an environment wi ...

2023