Multi-Graph Learning of Spectral Graph Dictionaries
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
How does coarsening affect the spectrum of a general graph? We provide conditions such that the principal eigenvalues and eigenspaces of a coarsened and original graph Laplacian matrices are close. The achieved approximation is shown to depend on standard ...
Additive models form a widely popular class of regression models which represent the relation between covariates and response variables as the sum of low-dimensional transfer functions. Besides flexibility and accuracy, a key benefit of these models is the ...
Institute of Electrical and Electronics Engineers2017
We provide a generic framework to learn shape dictionaries of landmark-based curves that are defined in the continuous domain. We first present an unbiased alignment method that involves the construction of a mean shape as well as training sets whose eleme ...
Graph signals offer a very generic and natural representation for data that lives on networks or irregular structures. The actual data structure is however often unknown a priori but can sometimes be estimated from the knowledge of the application domain. ...
Determining the size of a maximum independent set of a graph G, denoted by alpha(G), is an NP-hard problem. Therefore many attempts are made to find upper and lower bounds, or exact values of alpha(G) for special classes of graphs. This paper is aimed towa ...
Sparse representations of images in well-designed dictionaries can be used for effective classification. Meanwhile, training data available in most realistic settings are likely to be exposed to geometric transformations, which poses a challenge for the de ...
We propose a new statistical dictionary learning algorithm for sparse signals that is based on an α-stable innovation model. The parameters of the underlying model—that is, the atoms of the dictionary, the sparsity index α and the dispersion of the transfo ...
We consider the problem of reliably connecting an arbitrarily large set of computers (nodes) with communication channels. Reliability means here the ability, for any two nodes, to remain connected (i.e., their ability to communicate) with probability at le ...
In this paper, we consider learning dictionary models over a network of agents, where each agent is only in charge of a portion of the dictionary elements. This formulation is relevant in big data scenarios where multiple large dictionary models may be spr ...
In this paper, we consider learning dictionary models over a network of agents, where each agent is only in charge of a portion of the dictionary elements. This formulation is relevant in Big Data scenarios where large dictionary models may be spread over ...