Multi-Graph Learning of Spectral Graph Dictionaries
Related publications (58)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this work package (WP), we investigate the possibility of discovering structure within dictionary learning. This could range from exploring groups of atoms that appear in clusters - a form of molecule learning - to learning graphical dependencies across ...
Sparse methods are widely used in image and audio processing for denoising and classification, but there have been few previous applications to neural signals for brain-computer interfaces (BCIs). We used the dictionary- learning algorithm K-SVD, coupled w ...
This article treats the problem of learning a dictionary providing sparse representations for a given signal class, via ℓ1-minimisation. The problem can also be seen as factorising a \ddim×\nsig matrix $Y=(y_1 \ldots y_\nsig), , y_n\in \R^\ ...
Institute of Electrical and Electronics Engineers2010
We develop an efficient learning framework to construct signal dictionaries for sparse representation by selecting the dictionary columns from multiple candidate bases. By sparse, we mean that only a few dictionary elements, compared to the ambient signal ...
With the flood of information available today the question how to deal with high dimensional data/signals, which are cumbersome to handle, to calculate with and to store, is highly important. One approach to reducing this flood is to find sparse signal rep ...
This article treats the problem of learning a dictionary providing sparse representations for a given signal class, via ℓ1 minimisation. The problem is to identify a dictionary \dico from a set of training samples \Y knowing that \Y=\dico\X ...
A novel model is presented to learn bimodally informative structures from audio-visual signals. The signal is represented as a sparse sum of audio- visual kernels. Each kernel is a bimodal function consisting of synchronous snippets of an audio waveform an ...
In this work we present a new greedy algorithm for sparse approximation called LocOMP. LocOMP is meant to be run on local dictionaries made of atoms with much shorter supports than the signal length. This notably encompasses shift-invariant dictionaries an ...
We propose a new method for imaging sound speed in breast tissue from measurements obtained by ultrasound tomography (UST) scan- ners. Given the measurements, our algorithm finds a sparse image representation in an overcomplete dictionary that is adapted t ...
Starting from the basic problem of reconstructing a 2-dimensional image given by its projections on two axes, one associates a model of edge coloring in a complete bipartite graph. The complexity of the case with k=3 colors is open. Variations and special ...