Microfluidic engineering of artificial stem cell niches
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This invited review covers research areas of central importance for orthopaedic and maxillofacial bone tissue repair, including normal fracture healing and healing problems, biomaterial scaffolds for tissue engineering, mesenchymal and foetal stem cells, e ...
Hematopoietic stem cells (HSCs) have a unique ability to self-renew and produce differentiated progeny throughout the entire life of the human body. However, present clinical use of HSCs in regenerative medicine is largely hindered by our limited understan ...
Regenerative medicine is a novel clinical branch aiming at the cure of diseases by replacement of damaged tissues. The crucial use of stem cells makes this area rich of challenges, given the poorly understood mechanisms of differentiation. One highly neede ...
Mesenchymal Stem Cells (MSC) are multipotent stem cells that are predominantly obtained from the bone marrow. These cells have a high ability to differentiate into a multitude of cell types, which are very attractive for tissue engineering and cell therapy ...
The ability to reprogram adult cells into stem cells has raised hopes for novel therapies for many human diseases. Typical stem cell reprogramming protocols involve expression of a small number of genes in differentiated somatic cells with the c-Myc and Kl ...
To understand the regulatory role of niches in maintaining stem-cell fate, multifactorial in vitro models are required. These systems should enable analysis of biochemical and biophysical niche effectors in a combinatorial fashion and in the context of a p ...
Of the many external factors that affect cell behavior, mechanical cues have been found to be fundamental in modulating a cell’s phenotype. Indeed, merely changing substrate stiffness in monolayer culture systems generates drastically different phenotypes ...
Controlling the fate of stem cells in vitro is a key challenge towards using these cells in clinical applications. Adult stem cells (ASC) are known to reside in complex microenvironments called niches in vivo. These niches regulate stem cell fate providing ...
Stem cells capacity to self-renew and differentiate into specialized cell types, endow them with great promises in regenerative medicine. It is believed that the stem cells microenvironment plays a significant role in regulating their fate. However, with e ...
Biomaterials are increasingly being developed as in vitro microenvironments mimicking in vivo stem cell niches. However, current macroscale methodologies to produce these niche models fail to recapitulate the spatial and temporal characteristics of the com ...