Phonological Vocoding Using Artificial Neural Networks
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This paper presents our approach for automatic speech recognition (ASR) of overlapping speech. Our system consists of two principal components: a speech separation component and a feature estmation component. In the speech separation phase, we first estima ...
We propose a technique for generating alternative models for keywords in a hybrid hidden Markov model - artificial neural network (HMM-ANN) keyword spotting paradigm. Given a base pronunciation for a keyword from the lookup dictionary, our algorithm genera ...
We present an implementation and laboratory tests of a winner takes all (WTA) artificial neural network (NN) on two microcontrollers (μC) with the ARM Cortex M3 and the AVR cores. The prospective application of this device is in wireless body sensor networ ...
School of Engineering, The University of Waikato2010
The use of local phoneme posterior probabilities has been increasingly explored for improving speech recognition systems. Hybrid hidden Markov model / artificial neural network (HMM/ANN) and Tandem are the most successful examples of such systems. In this ...
We propose a technique for generating alternative models for keywords in a hybrid hidden Markov model - artificial neural network (HMM-ANN) keyword spotting paradigm. Given a base pronunciation for a keyword from the lookup dictionary, our algorithm genera ...
This paper investigates a neural network based acoustic feature mapping to extract robust features for automatic speech recognition (ASR) of overlapping speech. In our preliminary studies, we trained neural networks to learn the mapping from log mel filter ...
The use of local phoneme posterior probabilities has been increasingly explored for improving speech recognition systems. Hybrid hidden Markov model / artificial neural network (HMM/ANN) and Tandem are the most successful examples of such systems. In this ...
Motivated by biological neural networks and distributed sensing networks, we study how pooling networks – or quantizers – with random thresholds can be used in detection tasks. We provide a brief overview of the use of deterministic quantizers in detection ...
In this work we analyze and combine evidences from different classifiers for phoneme recognition using information from the confusion matrices. Speech signals are processed to extract the Perceptual Linear Prediction (PLP) and Multi-RASTA (MRASTA) features ...
In this paper we investigate combination of neural net based classifiers using Dempster-Shafer Theory of Evidence. Under some assumptions, combination rule resembles a product of errors rule observed in human speech perception. Different combination are te ...