Dimensional analysisIn engineering and science, dimensional analysis is the analysis of the relationships between different physical quantities by identifying their base quantities (such as length, mass, time, and electric current) and units of measurement (such as metres and grams) and tracking these dimensions as calculations or comparisons are performed. The term dimensional analysis is also used to refer to conversion of units from one dimensional unit to another, which can be used to evaluate scientific formulae.
Numerical analysisNumerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of numerical methods that attempt at finding approximate solutions of problems rather than the exact ones. Numerical analysis finds application in all fields of engineering and the physical sciences, and in the 21st century also the life and social sciences, medicine, business and even the arts.
Numerical methods for ordinary differential equationsNumerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals. Many differential equations cannot be solved exactly. For practical purposes, however – such as in engineering – a numeric approximation to the solution is often sufficient. The algorithms studied here can be used to compute such an approximation.
Embarrassingly parallelIn parallel computing, an embarrassingly parallel workload or problem (also called embarrassingly parallelizable, perfectly parallel, delightfully parallel or pleasingly parallel) is one where little or no effort is needed to separate the problem into a number of parallel tasks. This is often the case where there is little or no dependency or need for communication between those parallel tasks, or for results between them. Thus, these are different from distributed computing problems that need communication between tasks, especially communication of intermediate results.
MonomialIn mathematics, a monomial is, roughly speaking, a polynomial which has only one term. Two definitions of a monomial may be encountered: A monomial, also called power product, is a product of powers of variables with nonnegative integer exponents, or, in other words, a product of variables, possibly with repetitions. For example, is a monomial. The constant is a monomial, being equal to the empty product and to for any variable . If only a single variable is considered, this means that a monomial is either or a power of , with a positive integer.
Parallel algorithmIn computer science, a parallel algorithm, as opposed to a traditional serial algorithm, is an algorithm which can do multiple operations in a given time. It has been a tradition of computer science to describe serial algorithms in abstract machine models, often the one known as random-access machine. Similarly, many computer science researchers have used a so-called parallel random-access machine (PRAM) as a parallel abstract machine (shared-memory).
Parallel computingParallel computing is a type of computation in which many calculations or processes are carried out simultaneously. Large problems can often be divided into smaller ones, which can then be solved at the same time. There are several different forms of parallel computing: bit-level, instruction-level, data, and task parallelism. Parallelism has long been employed in high-performance computing, but has gained broader interest due to the physical constraints preventing frequency scaling.
DimensionIn physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coordinate is needed to specify a point on it - for example, the point at 5 on a number line. A surface, such as the boundary of a cylinder or sphere, has a dimension of two (2D) because two coordinates are needed to specify a point on it - for example, both a latitude and longitude are required to locate a point on the surface of a sphere.
Quintic functionIn mathematics, a quintic function is a function of the form where a, b, c, d, e and f are members of a field, typically the rational numbers, the real numbers or the complex numbers, and a is nonzero. In other words, a quintic function is defined by a polynomial of degree five. Because they have an odd degree, normal quintic functions appear similar to normal cubic functions when graphed, except they may possess one additional local maximum and one additional local minimum. The derivative of a quintic function is a quartic function.
Cartesian productIn mathematics, specifically set theory, the Cartesian product of two sets A and B, denoted A × B, is the set of all ordered pairs (a, b) where a is in A and b is in B. In terms of set-builder notation, that is A table can be created by taking the Cartesian product of a set of rows and a set of columns. If the Cartesian product rows × columns is taken, the cells of the table contain ordered pairs of the form (row value, column value).