Locally controlling mesenchymal stem cell morphogenesis by 3D PDGF-BB gradients towards the establishment of an in vitro perivascular niche
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The Mesenchymal Stem Cell (MSC) is a self-renewing multipotent progenitor originally found in the bone marrow. It has drawn strong interest from translational research because of the multipotency of MSCs, their immunosuppression, their intrinsic homing and ...
Hematopoietic stem cells (HSCs) are responsible for life-long production of all mature blood cells. This unique characteristic makes them an ideal candidate for cell-based therapies to treat various hematological malignancies. Their extensive use in the cl ...
Stem cell therapies hold tremendous potential for tissue and organ regeneration. Yet, there remains significant need for better ex vivo culture and manipulation methods. On the one hand, many tissue-specific stem cells cannot be propagated without causing ...
This invited review covers research areas of central importance for orthopaedic and maxillofacial bone tissue repair, including normal fracture healing and healing problems, biomaterial scaffolds for tissue engineering, mesenchymal and foetal stem cells, e ...
Most hematopoietic stem cells (HSC) in the bone marrow reside in a quiescent state and occasionally enter the cell cycle upon cytokine-induced activation. Although the mechanisms regulating HSC quiescence and activation remain poorly defined, recent studie ...
Biomolecular signaling is of utmost importance in governing many biological processes such as morphogenesis during tissue development where biomolecules regulate key cell-fate decisions. In vivo, these factors are presented in a spatiotemporally tightly co ...
Biomaterials are increasingly being developed as in vitro microenvironments mimicking in vivo stem cell niches. However, current macroscale methodologies to produce these niche models fail to recapitulate the spatial and temporal characteristics of the com ...
To better understand the extrinsic signals that control neural stem cell (NSC) fate, here we applied a microwell array platform which allows high-throughput clonal analyses of NSCs, cultured either as neurospheres or as adherent clones, exposed to poly(eth ...
Stem cells capacity to self-renew and differentiate into specialized cell types, endow them with great promises in regenerative medicine. It is believed that the stem cells microenvironment plays a significant role in regulating their fate. However, with e ...
To understand the regulatory role of niches in maintaining stem-cell fate, multifactorial in vitro models are required. These systems should enable analysis of biochemical and biophysical niche effectors in a combinatorial fashion and in the context of a p ...