Probing Absolute Spin Polarization at the Nanoscale
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The single-atom bit represents the ultimate limit of the classical approach to high-density magnetic storage media. So far, the smallest individually addressable bistable magnetic bits have consisted of 3-12 atoms(1-3). Long magnetic relaxation times have ...
The time-window for processing electron spin information (spintronics) in solid-state quantum electronic devices is determined by the spin-lattice and spin-spin relaxation times of electrons. Minimizing the effects of spin-orbit coupling and the local magn ...
In materials where electrons interact strongly, a number of exotic and exciting phenomena arise. The mechanisms at the base of many of these phenomena remain debated, as strongly correlated electron physics represents one of the biggest challenges for mode ...
One of the major disadvantages of Nuclear Magnetic Resonance (NMR) is its low sensitivity, mainly due to a very low spin polarization. Since 2003, Dissolution Dynamic Nuclear Polarization (D-DNP) provides a way of overcoming this drawback in solution by in ...
The interplay of superconductivity and magnetism is investigated for systems with dimensions ranging from the mesoscopic to the atomic scale by scanning tunneling microscopy (STM) at millikelvin temperatures and by numerical calculations. Based on geometri ...
Quantum wires with spin-orbit coupling provide a unique opportunity to simultaneously control the coupling strength and the screened Coulomb interactions where new exotic phases of matter can be explored. Here we report on the observation of an exotic spin ...
Radiatively decaying dark matter may be searched through investigating the photon spectrum of galaxies and galaxy clusters. We explore whether the properties of dark matter can be constrained through the study of a polarization state of emitted photons. St ...
Few-layer thick MoSe2 and WSe2 possess non-trivial spin textures with sizable spin splitting due to the inversion symmetry breaking embedded in the crystal structure and strong spin-orbit coupling. We report a spin-resolved photoemission study of MoSe2 and ...
The digitalization of our world is proceeding with every new technical product placed on the market. By making them smarter, e.g. linking them together and equipping them with sensors, a vast mass of data is collected. Processing and storing this informati ...
Spin-and angle-resolved photoemission spectroscopy is used to reveal that a large spin polarization is observable in the bulk centrosymmetric transition metal dichalcogenide MoS2. It is found that the measured spin polarization can be reversed by changing ...