Gaussian distribution for the divisor function and Hecke eigenvalues in arithmetic progressions
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
As large, data-driven artificial intelligence models become ubiquitous, guaranteeing high data quality is imperative for constructing models. Crowdsourcing, community sensing, and data filtering have long been the standard approaches to guaranteeing or imp ...
investigate the error term of the asymptotic formula for the number of squarefree integers up to some bound, and lying in some arithmetic progression a (mod q). In particular, we prove an upper bound for its variance as a varies over (Z/qZ)(x) which consid ...
Many decision problems in science, engineering, and economics are affected by uncertainty, which is typically modeled by a random variable governed by an unknown probability distribution. For many practical applications, the probability distribution is onl ...
Let f(z)=q+∑n≥2a(n)qn be a weight k normalized newform with integer coefficients and trivial residual mod 2 Galois representation. We extend the results of Amir and Hong in Amir and Hong (On L-functions of modular elliptic curves and certain K3 surfaces, R ...
Let (?(f) (n))(n=1) be the Hecke eigenvalues of either a holomorphic Hecke eigencuspform or a Hecke-Maass cusp form f. We prove that, for any fixed ? > 0, under the Ramanujan-Petersson conjecture for GL(2) Maass forms, the Rankin-Selberg coefficients (?(f) ...
We use the theory of foliations to study the relative canonical divisor of a normalized inseparable base-change. Our main technical theorem states that it is linearly equivalent to a divisor with positive integer coefficients divisible by p - 1. We deduce ...
In this paper we derive a series expansion for the price of a continuously sampled arithmetic Asian option in the Black-Scholes setting. The expansion is based on polynomials that are orthogonal with respect to the log-normal distribution. All terms in the ...
We prove an asymptotic formula for the shifted convolution of the divisor functions d(k)(n) and d(n) with k >= 4, which is uniform in the shift parameter and which has a power saving error term, improving results obtained previously by Fouvry and Tenenbaum ...
We prove that the coefficients of a GL3 x GL2 Rankin-Selberg L-function do not correlate with a wide class of trace functions of small conductor modulo primes, generalizing the corresponding result of Fouvry, Kowalski, and Michel for GL2 and of Kowalski, L ...
Given two probability measures P and Q and an event E, we provide bounds on P(E) in terms of Q(E) and f-divergences. In particular, the bounds are instantiated when the measures considered are a joint distribution and the corresponding product of marginals ...