Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.
Naturally occurring photosynthetic systems in plants are supported by elaborate pathways of self-repair that limit the impact of photo-damage. Herein, we demonstrate a complex consisting of two recombinant proteins, phospholipids and a carbon nanotube that reversibly assembles into a particular configuration, forming an array of 4 nm lipid bilayers housing light-converting proteins. The system can reversibly self-assemble into this configuration, and disassemble upon the addn. of sodium cholate, over an indefinite no. of cycles. The assembly is thermodynamically meta-stable and can only transition reversibly between free components and assembled state if the rate of surfactant removal exceeds about 10-5 sec-1. Only in the assembled state, do the complexes exhibit photoelectrochem. activity. We demonstrate a regeneration cycle that utilizes only surfactant to signal between assembly and disassembly with the result that photo-conversion efficiency is increased more than 300% over 168 h, and the useable lifetime extended indefinitely. [on SciFinder(R)]