Publication

Mobility and dynamics in the complex hydrides LiAlH4 and LiBH4

Pascal Martelli
2011
Journal paper
Abstract

The dynamics and bonding of the complex hydrides LiBH4 and LiAlH4 have been investigated by vibrational spectroscopy. The combination of infrared, Raman, and inelastic neutron scattering (INS) spectroscopies on hydrided and deuterided samples reveals a complete picture of the dynamics of the BH-4 and AlH-4 anions respectively as well as the lattice. The straightforward interpretation of isotope effects facilitates tracer diffusion experiments revealing the diffusion coefficients of hydrogen containing species in LiBH4, and LiAlH4. LiBH4 exchanges atomic hydrogen starting at 200 °C. Despite having an iso-electronic structure, the mobility of hydrogen in LiAlH4 is different from that of LiBH4. Upon ball-milling of LiAlH4 and LiAlD4, hydrogen is exchanged with deuterium even at room temperature. However, the exchange reaction competes with the decomposition of the compound. The diffusion coefficients of the alanate and borohydride have been found to be D ≃ 7 × 10-14 m2 s -1 at 473 K and D ≃ 5 × 10-16 m2 s-1 at 348 K, respectively. The BH-4 ion is easily exchanged by other ions such as I- or by NH-2. This opens the possibility of tailoring physical properties such as the temperature of the phase transition linked to the Li-ion conductivity in LiBH4 as measured by nuclear magnetic resonance and Raman spectroscopy. Temperature dependent Raman measurements on diffusion gradient samples Li(BH4)1-cIc demonstrate that increasing temperature has a similar impact to increasing the iodide concentration c: the system is driven towards the high-temperature phase of LiBH4. The influence of anion exchange on the hydrogen sorption properties is limited, though. For example, Li4(BH 4)(NH2)3 does not exchange hydrogen easily even in the melt. © The Royal Society of Chemistry 2011.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Raman spectroscopy
Raman spectroscopy (ˈrɑːmən) (named after Indian physicist C. V. Raman) is a spectroscopic technique typically used to determine vibrational modes of molecules, although rotational and other low-frequency modes of systems may also be observed. Raman spectroscopy is commonly used in chemistry to provide a structural fingerprint by which molecules can be identified. Raman spectroscopy relies upon inelastic scattering of photons, known as Raman scattering.
Hydrogen storage
Several methods exist for storing hydrogen. These include mechanical approaches such as using high pressures and low temperatures, or employing chemical compounds that release H2 upon demand. While large amounts of hydrogen are produced by various industries, it is mostly consumed at the site of production, notably for the synthesis of ammonia. For many years hydrogen has been stored as compressed gas or cryogenic liquid, and transported as such in cylinders, tubes, and cryogenic tanks for use in industry or as propellant in space programs.
Temperature
Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer. Thermometers are calibrated in various temperature scales that historically have relied on various reference points and thermometric substances for definition. The most common scales are the Celsius scale with the unit symbol °C (formerly called centigrade), the Fahrenheit scale (°F), and the Kelvin scale (K), the latter being used predominantly for scientific purposes.
Show more
Related publications (162)

Light Emission and Conductance Fluctuations in Electrically Driven and Plasmonically Enhanced Molecular Junctions

Christophe Marcel Georges Galland, Konstantin Malchow, Wen Chen, Sakthi Priya Amirtharaj

Electrically connected and plasmonically enhanced molecular junctions combine the optical functionalities of high field confinement and enhancement (cavity function), and of high radiative efficiency (antenna function) with the electrical functionalities o ...
Amer Chemical Soc2024

Solid-state synthesis of CdFe2O4 binary catalyst for potential application in renewable hydrogen fuel generation

Michael Graetzel, Shaik Mohammed Zakeeruddin

Clean energy is highly needed at this time when the energy requirements are rapidly increasing. The observed increasing energy requirement are largely due to continued industrialization and global population explosion. The current means of energy source is ...
NATURE PORTFOLIO2022

Effect of Co-Substitution on Hydrogen Absorption and Desorption Reactions of YMgNi4-Based Alloys

Andreas Züttel, Wen Luo, Heena Yang

YMgNi4-based alloys exhibit reversible hydrogen absorption and desorption reactions at near room temperature. Here, we report that Co-substituted YMgNi4-based alloys exhibited higher hydrogen contents and lower hydrogen absorption and desorption reaction p ...
AMER CHEMICAL SOC2022
Show more
Related MOOCs (32)
Basic Steps in Magnetic Resonance
A MOOC to discover basic concepts and a wide range of intriguing applications of magnetic resonance to physics, chemistry, and biology
Fundamentals of Biomedical Imaging: Magnetic Resonance Imaging (MRI)
Learn about magnetic resonance, from the physical principles of Nuclear Magnetic Resonance (NMR) to the basic concepts of image reconstruction (MRI).
Fundamentals of Biomedical Imaging: Magnetic Resonance Imaging (MRI)
Learn about magnetic resonance, from the physical principles of Nuclear Magnetic Resonance (NMR) to the basic concepts of image reconstruction (MRI).
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.