Publication

Personal Learning with Social Media

Na Li
2015
EPFL thesis
Abstract

Social media platforms are increasingly used in recent years to support learning activities, especially for the construction of activity- and learner-centric personal learning environments (PLEs). This thesis investigates the solutions to four essential design requirements for social media based PLEs: support for help seeking, privacy protection, identity management and activity monitoring, as well as context awareness. Three main components of the thesis, reputation, privacy, and identity, are built upon these four design requirements. We investigate the three components through the following research questions. How do we help learners to find suitable experts or peers who they can learn from or collaborate with in a particular learning context? How can we design a proper privacy mechanism to make sure the information shared by learners is only disclosed to the intended audience in a given context? What identity scheme should be used to preserve the privacy of learners while also providing personalized learning experience, especially for teenage learners? To tackle the design requirement of support for help seeking, we address the reputation dimension in the context of personal learning for doctoral studies, where doctoral students need to find influential experts or peers in a particular domain. We propose an approach to detect a domain-specific community in academic social media platforms. Based on that, we investigate the influence of scholars taking both their academic and social impact into account. We propose a measure called R-Index that aggregates the readership of a scholar's publications to assess her academic impact. Furthermore, we add the social dimension into the influence measure by adopting network centrality metrics in a domain-specific community. Our results show that academic influence and social influence measures do not strongly correlate with each other, which implies that, adding the social dimension could enhance the traditional impact metrics that only take academic influence into account. Moreover, we tackle the privacy dimension of designing a PLE in the context of higher education. To protect against unauthorized access to learners' data, we propose a privacy control approach that allows learners to specify the audience, action, and artifact for their sharing behavior. Then we introduce the notion of privacy protocol with which learners can define fine-grained sharing rules. To provide a usable application of the privacy protocol in social media based PLEs, we exploit the space concept that provides an easy way for users to define the privacy protocols within a particular context. The proposed approach is evaluated through two user studies. The results reveal that learners confirm the usefulness and usability of the privacy enhanced sharing scheme based on spaces. In the last part of the thesis, we study the identity dimension in the context of STEM education at secondary and high schools. To support personalization while also preserving learners' privacy, we propose a classroom-like pseudonymity scheme that allows tracking of learners' activities while keeping their real identities undisclosed. In addition, we present a data storage mechanism called Vault that allows apps to store and exchange data within the scope of a Web-based inquiry learning space.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (44)
Privacy law
Privacy law is the body of law that deals with the regulating, storing, and using of personally identifiable information, personal healthcare information, and financial information of individuals, which can be collected by governments, public or private organisations, or other individuals. It also applies in the commercial sector to things like trade secrets and the liability that directors, officers, and employees have when handing sensitive information.
Personalized learning
Personalized learning, individualized instruction, personal learning environment and direct instruction all refer to efforts to tailor education to meet the different needs of students. The use of the term "personalized learning" dates back to at least the early 1960s, but there is no widespread agreement on the definition and components of a personal learning environment. Even enthusiasts for the concept admit that personal learning is an evolving term and doesn't have any widely accepted definition.
Requirement
In product development and process optimization, a requirement is a singular documented physical or functional need that a particular design, product or process aims to satisfy. It is commonly used in a formal sense in engineering design, including for example in systems engineering, software engineering, or enterprise engineering. It is a broad concept that could speak to any necessary (or sometimes desired) function, attribute, capability, characteristic, or quality of a system for it to have value and utility to a customer, organization, internal user, or other stakeholder.
Show more
Related publications (120)

Enhancing Procedural Writing Through Personalized Example Retrieval: A Case Study on Cooking Recipes

Antoine Bosselut, Jibril Albachir Frej, Paola Mejia Domenzain, Luca Mouchel, Tatjana Nazaretsky, Seyed Parsa Neshaei, Thiemo Wambsganss

Writing high-quality procedural texts is a challenging task for many learners. While example-based learning has shown promise as a feedback approach, a limitation arises when all learners receive the same content without considering their individual input ...
2024

Chat2Code: A Chatbot for Model Specification and Code Generation, The Case of Smart Contracts

Shailesh Mishra

The potential of automatic code generation through Model-Driven Engineering (MDE) frameworks has yet to be realized. Beyond their ability to help software professionals write more accurate, reusable code, MDE frameworks could make programming accessible fo ...
Los Alamitos2023

Arbitrary Decisions are a Hidden Cost of Differentially Private Training

Carmela González Troncoso, Bogdan Kulynych

Mechanisms used in privacy-preserving machine learning often aim to guarantee differential privacy (DP) during model training. Practical DP-ensuring training methods use randomization when fitting model parameters to privacy-sensitive data (e.g., adding Ga ...
New York2023
Show more
Related MOOCs (14)
Enjeux Mondiaux - Communication
The Communication A module of the course on Global Issues tackles challenges related to instantaneous communication and social media. The interdisciplinary approach implemented integrates SHS and engi
Instructional Design with Orchestration Graphs
Discover a visual language for designing pedagogical scenarios that integrate individual, team and class wide activities.
Instructional Design with Orchestration Graphs
Discover a visual language for designing pedagogical scenarios that integrate individual, team and class wide activities.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.