Tomographic reconstructionTomographic reconstruction is a type of multidimensional inverse problem where the challenge is to yield an estimate of a specific system from a finite number of projections. The mathematical basis for tomographic imaging was laid down by Johann Radon. A notable example of applications is the reconstruction of computed tomography (CT) where cross-sectional images of patients are obtained in non-invasive manner.
Structural biologyStructural biology is a field that is many centuries old which, as defined by the Journal of Structural Biology, deals with structural analysis of living material (formed, composed of, and/or maintained and refined by living cells) at every level of organization. Early structural biologists throughout the 19th and early 20th centuries were primarily only able to study structures to the limit of the naked eye's visual acuity and through magnifying glasses and light microscopes.
Sign (mathematics)In mathematics, the sign of a real number is its property of being either positive, negative, or zero. Depending on local conventions, zero may be considered as being neither positive nor negative (having no sign or a unique third sign), or it may be considered both positive and negative (having both signs). Whenever not specifically mentioned, this article adheres to the first convention. In some contexts, it makes sense to consider a signed zero (such as floating-point representations of real numbers within computers).
Triangular functionA triangular function (also known as a triangle function, hat function, or tent function) is a function whose graph takes the shape of a triangle. Often this is an isosceles triangle of height 1 and base 2 in which case it is referred to as the triangular function. Triangular functions are useful in signal processing and communication systems engineering as representations of idealized signals, and the triangular function specifically as an integral transform kernel function from which more realistic signals can be derived, for example in kernel density estimation.
Symmetric bilinear formIn mathematics, a symmetric bilinear form on a vector space is a bilinear map from two copies of the vector space to the field of scalars such that the order of the two vectors does not affect the value of the map. In other words, it is a bilinear function that maps every pair of elements of the vector space to the underlying field such that for every and in . They are also referred to more briefly as just symmetric forms when "bilinear" is understood.
Bilinear transformThe bilinear transform (also known as Tustin's method, after Arnold Tustin) is used in digital signal processing and discrete-time control theory to transform continuous-time system representations to discrete-time and vice versa. The bilinear transform is a special case of a conformal mapping (namely, a Möbius transformation), often used to convert a transfer function of a linear, time-invariant (LTI) filter in the continuous-time domain (often called an analog filter) to a transfer function of a linear, shift-invariant filter in the discrete-time domain (often called a digital filter although there are analog filters constructed with switched capacitors that are discrete-time filters).
Source textA source text is a text (sometimes oral) from which information or ideas are derived. In translation, a source text is the original text that is to be translated into another language. In historiography, distinctions are commonly made between three kinds of source texts: Primary source Primary sources are firsthand written accounts made at the time of an event by someone who was present. They have been described as those sources closest to the origin of the information or idea under study.