Terahertz magnetic modulator based on magnetically clustered nanoparticles
Related publications (34)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We develop a reduced model for hard-magnetic, thin, linear-elastic shells that can be actuated through an external magnetic field, with geometrically exact strain measures. Assuming a reduced kinematics based on the Kirchhoff-Love assumption, we derive a r ...
Magnetic materials can host skyrmions, which are topologically non-trivial spin textures. In chiral magnets with cubic lattice symmetry, all previously observed skyrmion phases require thermal fluctuations to become thermodynamically stable in bulk materia ...
Implantable devices for localized and controlled drug release are important, e.g., for therapies of cancer and chronic pain. However, most of the existing active implants are limited by the usage of nonbiodegradable materials; thus, surgery is needed to ex ...
Collective spin excitations propagating in magnetically ordered materials are called spin waves (SWs) or magnons. They are promising for low-power and beyond-CMOS information processing, which do not suffer from the ohmic losses. SWs in ferromagnets (antif ...
Magnons (spin waves, SWs) are elementary spin excitations in magnetically ordered materials. They are the promising quanta for the transmission and processing of information. Magnons can be coupled to the electromagnetic waves utilized for the wireless com ...
Intensive developments of plasmonic nanomaterials over recent decades have inspired appealing applications in biosensing, optical trapping, fluorescence enhancement and light harvesting in solar cells. These nanostructures supporting unique light-matter in ...
By means of the plane-wave method we study spin-wave dynamics in two-dimensional bicomponent magnonic crystals based on a squeezed hexagonal lattice and consist of a permalloy thin film with cobalt inclusions. We explore the dependence of a spin-wave frequ ...
Radiation from magnetic and electric dipole moments is a key subject in the theory of electrodynamics. Although people treat the problem thoroughly in the context of the frequency domain, the problem is still not well understood in the context of the time ...
A fundamental form of magnon-phonon interaction is an intrinsic property of magnetic materials, the “magnetoelastic coupling.” This form of interaction has been the basis for describing magnetostrictive materials and their applications, where strain induce ...
Hybrid semiconductor-ferromagnetic insulator heterostructures are interesting due to their tunable electronic transport, self-sustained stray field, and local proximitized magnetic exchange. In this work, we present lattice-matched hybrid epitaxy of semico ...