Intense THz radiation produced in organic salt crystals for high-field applications
Related publications (38)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Topological insulators (TIs) are interesting quantum matters that have a narrow bandgap for bulk and a Dirac-cone-like conducting surface state (SS). The recent discovered second Dirac surface state (SS) and bulk bands (BBs) located similar to 1.5 eV above ...
The spectrum of terahertz (THz) emission in gases via ionizing two-color femtosecond pulses is analyzed by means of a semi-analytic model and numerical simulations in 1D, 2D and 3D geometries taking into account propagation effects of both pump and THz fie ...
We studied the effects of cryogenic cooling of a 2-[ 3-(4hydroxystyryl)-5, 5-dimethylcyclohex-2-enylidene] malononitrile (OH1) crystal on the generation of broadband THz pulses via collinear optical rectification of 1350 nm femtosecond laser pulses. Coolin ...
Single-cycle THz pulses with electric field strength of MV/cm are required for wide range of applications from physics to biology and medicine [1]. Presently, high fields are still challenging to produce in the THz gap (0.1-10 THz) where important condense ...
We report on compact and efficient laser-based THz generation in the terahertz frequency gap (1-10 THz). The radiation is generated by optical rectification of a midinfrared laser in a large-size, partitioned nonlinear organic crystal assembly. This enable ...
Intense Terahertz radiation in organic crystals is typically generated by optical rectification of short wavelength infrared femtosecond lasers between 1.3 and 1.5 μm. In this wavelength range high energy ultrashort pump sources are hardly available. Here ...
We present a numerical parametric study of single-cycle electromagnetic pulse generation in a DAST/SiO2 multilayer structure via collinear optical rectification of 800 nm femtosecond laser pulses. It is shown that modifications of the thicknesses of the DA ...
Graphene plasmonic nanostructures enable subwavelength confinement of electromagnetic energy from the mid-infrared down to the terahertz frequencies. By exploiting the spectrally varying light scattering phase at the vicinity of the resonant frequency of t ...
Transmission through a photoexcited semiconductor is used to temporally and spectrally shape a terahertz (THz) pulse. By adjusting the optical pump-THz probe delay, we experimentally introduce a polar asymmetry in the pulse profile as large as 92%. To shap ...
We demonstrate highly efficient Terahertz production and absolute phase control in the hardly accessible THz frequency gap (1-15 THz) by optical rectification in organic crystals leading to single-cycle field oscillations beyond 150MV/m and 0.5 Tesla. ...