Publication

Asymmetry of collective excitations in electron- and hole-doped cuprate superconductors

Abstract

High-temperature superconductivity emerges on doping holes or electrons into antiferromagnetic copper oxides. The large energy scale of magnetic excitations, for example, compared with phonon energies, is thought to drive superconductivity with high transition temperatures (T c). Comparing high-energy magnetic excitations of hole- and electron-doped superconductors provides an opportunity to test this hypothesis. Here, we use resonant inelastic X-ray scattering at the Cu L 3 -edge to reveal collective excitations in the electron-doped cuprate Nd 2-x Ce x CuO 4. Surprisingly, magnetic excitations harden significantly across the antiferromagnetic high-temperature superconductivity phase boundary despite short-ranged antiferromagnetic correlations, in contrast to the hole-doped cuprates. Furthermore, we find an unexpected branch of collective modes in superconducting compounds, absent in hole-doped cuprates. These modes emanate from the zone centre and possess a higher temperature scale than T c, signalling a distinct quantum phase. Despite their differences, the persistence of magnetic excitations and the existence of a distinct quantum phase are apparently universal in both hole- and electron-doped cuprates. © 2014 Macmillan Publishers Limited.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (33)
High-temperature superconductivity
High-temperature superconductors (abbreviated high-Tc or HTS) are defined as materials with critical temperature (the temperature below which the material behaves as a superconductor) above , the boiling point of liquid nitrogen. They are only "high-temperature" relative to previously known superconductors, which function at even colder temperatures, close to absolute zero. The "high temperatures" are still far below ambient (room temperature), and therefore require cooling.
Unconventional superconductor
Unconventional superconductors are materials that display superconductivity which does not conform to conventional BCS theory or its extensions. The superconducting properties of CeCu2Si2, a type of heavy fermion material, were reported in 1979 by Frank Steglich. For a long time it was believed that CeCu2Si2 was a singlet d-wave superconductor, but since the mid 2010s, this notion has been strongly contested. In the early eighties, many more unconventional, heavy fermion superconductors were discovered, including UBe13, UPt3 and URu2Si2.
Superconductivity
Superconductivity is a set of physical properties observed in certain materials where electrical resistance vanishes and magnetic fields are expelled from the material. Any material exhibiting these properties is a superconductor. Unlike an ordinary metallic conductor, whose resistance decreases gradually as its temperature is lowered, even down to near absolute zero, a superconductor has a characteristic critical temperature below which the resistance drops abruptly to zero.
Show more
Related publications (64)

Murunskite - a new class of functional material

Davor Tolj

The subject of the present work is discovery and in-depth characterization of a new class of functional materials. Tuning of the bond polarity and orbital occupation with a goal of establishing balance between localization and delocalization of electrons - ...
EPFL2023

Experimental study of stability, quench propagation and detection methods on 15 kA sub-scale HTS fusion conductors in SULTAN

Pierluigi Bruzzone, Kamil Sedlák, Nikolay Bykovskiy, Ortensia Dicuonzo

High-temperature superconductors (HTSs) enable exclusive operating conditions for fusion magnets, boosting their performance up to 20 T generated magnetic fields in the temperature range from 4 K to 20 K. One of the main technological issues of HTS conduct ...
IOP Publishing Ltd2023

Resonant Inelastic X-Ray Scattering Study of Electron-Exciton Coupling in High-T-c Cuprates

Fabrizio Carbone, Thorsten Schmitt, Ivan Madan, Christophe Berthod, Francesco Barantani, Yi Tseng, Dirk Van der Marel

Explaining the mechanism of superconductivity in the high-T-c cuprates requires an understanding of what causes electrons to form Cooper pairs. Pairing can be mediated by phonons, the screened Coulomb force, spin or charge fluctuations, excitons, or by a c ...
AMER PHYSICAL SOC2022
Show more
Related MOOCs (12)
Fundamentals of Biomedical Imaging: Magnetic Resonance Imaging (MRI)
Learn about magnetic resonance, from the physical principles of Nuclear Magnetic Resonance (NMR) to the basic concepts of image reconstruction (MRI).
Fundamentals of Biomedical Imaging: Magnetic Resonance Imaging (MRI)
Learn about magnetic resonance, from the physical principles of Nuclear Magnetic Resonance (NMR) to the basic concepts of image reconstruction (MRI).
Basic Steps in Magnetic Resonance
A MOOC to discover basic concepts and a wide range of intriguing applications of magnetic resonance to physics, chemistry, and biology
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.