Dynamic crack propagation in a heterogeneous ceramic microstructure, insights from a cohesive model
Related publications (53)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Silicon nitride based ceramics (SiAlONs); tetragonal polycrystalline zirconia (3Y‐TZP); alumina and their composites reinforced with different amount of multi‐ walled carbon‐nanotubes (CNTs) have been processed by Spark Plasma Sintering (SPS). High tempera ...
This PhD Thesis work was aimed at investigating the potentiality of tungsten-base materials as structural materials for the future thermonuclear fusion reactors in attempting to develop reduced activation tungsten-base materials with high strength and suff ...
Plane-strain tensile loading numerical simulations of dynamic crack propagation in silicon nitride microstructures are conducted. The strength and toughness are evaluated as a function of strain rate and microstructural parameters, including grain size and ...
In this paper, the results of a 2D full field grain growth model are compared with several 2D mean field grain growth models (Burke and Turbull model and Hillert/Abbruzzese model), using simplified assumptions of isotropic grain boundary energy and mobilit ...
Despite decades of study, the atomic-scale mechanisms of fatigue crack growth remain elusive. Here we use the coupled atomistic–discrete dislocation method, a multiscale simulation method, to examine the influence of dislocation glide resistance on near-th ...
Production of transparent ceramics has become a topic of resurgent interest in recent years, with its promise of near-net shaping appealing to applications ranging from biomedicine to solar energy. However, the mechanisms governing ceramic transparency, tr ...
The intrinsic lattice resistance to dislocation motion, or Peierls stress, depends on the core structure of the dislocation and is one essential feature controlling plastic anisotropy in materials such as HCP Zn, Mg, and Ti. Here, we implement an anisotrop ...
An equilibrated polycrystalline material is considered, containing a small fraction of void space (melt or vapor), for which the crystals are above their roughening transition against this medium. The grain boundaries are approximated to have equal free en ...
The densification and grain growth of bodies made from a commercial ultrafine alumina powder was investigated. The primary powder was initially subjected to dry (uniaxial cold pressing) and wet shaping (slip casting), followed by conventional (CS)-, two st ...
Microstructural control is a key aspect in producing ceramics with tailored properties and is often achieved by using dopants in a rather empirical fashion. Atomic scale simulations could provide much needed insight but the long-standing challenge of linki ...