Publication

Rapid, Sensitive and Real-Time Multiplexing Platform for the Analysis of Protein and Nucleic-Acid Biomarkers

Abstract

We describe a multiplexing technology, named Evalution, based on novel digitally encoded microparticles in microfluidic channels. Quantitative multiplexing is becoming increasingly important for research and routine clinical diagnostics, but fast, easy-to-use, flexible and highly reproducible technologies are needed to leverage the advantages of multiplexing. The presented technology has been tailored to ensure (i) short assay times and high reproducibility thanks to reaction-limited binding regime, (ii) dynamic control of assay conditions and real-time binding monitoring allowing optimization of multiple parameters within a single assay run, (iii) compatibility with various immunoassay formats such as coflowing the samples and detection antibodies simultaneously and hence simplifying workflows, (iv) analyte quantification based on initial binding rates leading to increased system dynamic range and (v) high sensitivity via enhanced fluorescence collection. These key features are demonstrated with assays for proteins and nucleic acids showing the versatility of this technology.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (21)
Assay
An assay is an investigative (analytic) procedure in laboratory medicine, mining, pharmacology, environmental biology and molecular biology for qualitatively assessing or quantitatively measuring the presence, amount, or functional activity of a target entity. The measured entity is often called the analyte, the measurand, or the target of the assay. The analyte can be a drug, biochemical substance, chemical element or compound, or cell in an organism or organic sample.
Bradford protein assay
The Bradford protein assay (also known as the Coomassie protein assay) was developed by Marion M. Bradford in 1976. It is a quick and accurate spectroscopic analytical procedure used to measure the concentration of protein in a solution. The reaction is dependent on the amino acid composition of the measured proteins. The Bradford assay, a colorimetric protein assay, is based on an absorbance shift of the dye Coomassie brilliant blue G-250. The Coomassie brilliant blue G-250 dye exists in three forms: anionic (blue), neutral (green), and cationic (red).
High dynamic range
High dynamic range (HDR) is a dynamic range higher than usual, synonyms are wide dynamic range, extended dynamic range, expanded dynamic range. The term is often used in discussing the dynamic range of various signals such as s, videos, audio or radio. It may apply to the means of recording, processing, and reproducing such signals including analog and digitized signals. The term is also the name of some of the technologies or techniques allowing to achieve high dynamic range images, videos, or audio.
Show more
Related publications (34)

Efficient AC electrothermal flow (ACET) on-chip for enhanced immunoassays

Martinus Gijs, Diego Gabriel Dupouy, Muaz Salama Abdelmonem Draz

Biochemical reaction rates in microfluidic systems are known to be limited by the diffusional transport of reagents, leading often to lowered sensitivity and/or longer detection times in immunoassays. Several methods, including electrically powering electr ...
ROYAL SOC CHEMISTRY2023

Development of next-generation microfluidic systems for enhanced, faster, and cost-effective immunoassays for tissue diagnostics - Ac electrothermal flow & Acoustofluidics

Muaz Salama Abdelmonem Draz

The application of microfluidics in the field of surface-based assays and more specifically, the spatial molecular profiling of tumor tissues has gained a lot of interest, especially with the increased interest in personalized medicine and targeted therapy ...
EPFL2023

Acoustofluidic large-scale mixing for enhanced microfluidic immunostaining for tissue diagnostics

Martinus Gijs, Diego Gabriel Dupouy, Muaz Salama Abdelmonem Draz

The usage of microfluidics for automated and fast immunoassays has gained a lot of interest in the last decades. This integration comes with certain challenges, like the reconciliation of laminar flow patterns of micro-scale systems with diffusion-limited ...
ROYAL SOC CHEMISTRY2023
Show more
Related MOOCs (3)
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Microstructure Fabrication Technologies I
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.