Phase ruleIn thermodynamics, the phase rule is a general principle governing "pVT" systems, whose thermodynamic states are completely described by the variables pressure (p), volume (V) and temperature (T), in thermodynamic equilibrium. If F is the number of degrees of freedom, C is the number of components and P is the number of phases, then It was derived by American physicist Josiah Willard Gibbs in his landmark paper titled On the Equilibrium of Heterogeneous Substances, published in parts between 1875 and 1878.
Permeability (Earth sciences)Permeability in fluid mechanics and the Earth sciences (commonly symbolized as k) is a measure of the ability of a porous material (often, a rock or an unconsolidated material) to allow fluids to pass through it. Permeability is a property of porous materials that is an indication of the ability for fluids (gas or liquid) to flow through them. Fluids can more easily flow through a material with high permeability than one with low permeability.
Unstructured gridAn unstructured grid or irregular grid is a tessellation of a part of the Euclidean plane or Euclidean space by simple shapes, such as triangles or tetrahedra, in an irregular pattern. Grids of this type may be used in finite element analysis when the input to be analyzed has an irregular shape. Unlike structured grids, unstructured grids require a list of the connectivity which specifies the way a given set of vertices make up individual elements (see graph (data structure)).
Binomial theoremIn elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial. According to the theorem, it is possible to expand the polynomial (x + y)n into a sum involving terms of the form axbyc, where the exponents b and c are nonnegative integers with b + c = n, and the coefficient a of each term is a specific positive integer depending on n and b. For example, for n = 4, The coefficient a in the term of axbyc is known as the binomial coefficient or (the two have the same value).
Volume fractionIn chemistry and fluid mechanics, the volume fraction φi is defined as the volume of a constituent Vi divided by the volume of all constituents of the mixture V prior to mixing: Being dimensionless, its unit is 1; it is expressed as a number, e.g., 0.18. It is the same concept as volume percent (vol%) except that the latter is expressed with a denominator of 100, e.g., 18%. The volume fraction coincides with the volume concentration in ideal solutions where the volumes of the constituents are additive (the volume of the solution is equal to the sum of the volumes of its ingredients).
Quasi-isometryIn mathematics, a quasi-isometry is a function between two metric spaces that respects large-scale geometry of these spaces and ignores their small-scale details. Two metric spaces are quasi-isometric if there exists a quasi-isometry between them. The property of being quasi-isometric behaves like an equivalence relation on the class of metric spaces. The concept of quasi-isometry is especially important in geometric group theory, following the work of Gromov.