Memory addressIn computing, a memory address is a reference to a specific memory location used at various levels by software and hardware. Memory addresses are fixed-length sequences of digits conventionally displayed and manipulated as unsigned integers. Such numerical semantic bases itself upon features of CPU (such as the instruction pointer and incremental address registers), as well upon use of the memory like an array endorsed by various programming languages. A digital computer's main memory consists of many memory locations.
Partial applicationIn computer science, partial application (or partial function application) refers to the process of fixing a number of arguments to a function, producing another function of smaller arity. Given a function , we might fix (or 'bind') the first argument, producing a function of type . Evaluation of this function might be represented as . Note that the result of partial function application in this case is a function that takes two arguments. Partial application is sometimes incorrectly called currying, which is a related, but distinct concept.
Physical addressIn computing, a physical address (also real address, or binary address), is a memory address that is represented in the form of a binary number on the address bus circuitry in order to enable the data bus to access a particular storage cell of main memory, or a register of memory-mapped I/O device. In a computer supporting virtual memory, the term physical address is used mostly to differentiate from a virtual address.
Hamiltonian path problemIn the mathematical field of graph theory the Hamiltonian path problem and the Hamiltonian cycle problem are problems of determining whether a Hamiltonian path (a path in an undirected or directed graph that visits each vertex exactly once) or a Hamiltonian cycle exists in a given graph (whether directed or undirected). Both problems are NP-complete.
IP addressAn Internet Protocol address (IP address) is a numerical label such as 192.0.2.1 that is connected to a computer network that uses the Internet Protocol for communication. An IP address serves two main functions: network interface identification, and location addressing. Internet Protocol version 4 (IPv4) defines an IP address as a 32-bit number. However, because of the growth of the Internet and the depletion of available IPv4 addresses, a new version of IP (IPv6), using 128 bits for the IP address, was standardized in 1998.
Link-local addressIn computer networking, a link-local address is a unicast network address that is valid only for communications within the subnetwork that the host is connected to. Link-local addresses are most often assigned automatically with a process known as stateless address autoconfiguration or link-local address autoconfiguration, also known as automatic private IP addressing (APIPA) or auto-IP. Link-local addresses are not guaranteed to be unique beyond their network segment.