Improving the study of proton transfers between amino acid side chains in solution: choosing appropriate DFT functionals and avoiding hidden pitfalls
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Publications related to Improving the study of proton transfers between amino acid side chains in solution: choosing appropriate DFT functionals and avoiding hidden pitfalls | EPFL Graph Search
A long-standing goal of science is to accurately simulate large molecular systems using quantum mechanics. The poor scaling of current quantum chemistry algorithms on classical computers, however, imposes an effective limit of about a few dozen atoms on tr ...
At present, there is no general standard automated method for engineering metalloenzymes, industrially-relevant systems able to catalyze environmentally friendly reactions. One of the most studied natural metalloenzymes is the second isoform of human carbo ...
The electronic density of states (DOS) quantifies the distribution of the energy levels that can be occupied by electrons in a quasiparticle picture and is central to modern electronic structure theory. It also underpins the computation and interpretation ...
The automation of ab initio simulations is essential in view of performing high-throughput (HT) computational screenings oriented to the discovery of novel materials with desired physical properties. In this work, we propose algorithms and implementations ...
Over the past decade we have developed Koopmans functionals, a computationally efficient approach for predicting spectral properties with an orbital-density-dependent functional framework. These functionals impose a generalized piecewise linearity conditio ...
The most promising solution towards cementitious materials with a lower carbon footprint is the partial substitution of the clinker by supplementary cementitious materials (SCMs) such as fly ash, blast furnace slag, limestone and calcined clays. The produc ...
Computational chemistry aims to simulate reactions and molecular properties at the atomic scale, advancing the design of novel compounds and materials with economic, environmental, and societal implications. However, the field relies on approximate quantum ...
Transition metal oxides represent a class of materials displaying very unusual electronic, structural and magnetic properties. They are extremely interesting, both from a technological and fundamental point of view. The most important characteristic of the ...
In my thesis, I present an investigation of the dissociation reactions of gas phase molecules on single crystal metal surfaces studied by a molecular beam in combination with Reflection Absorption Infrared Spectroscopy (RAIRS). Two gas/surface systems were ...
Atomic simulations using machine learning interatomic potential (MLIP) have gained a lot of popularity owing to their accuracy in comparison to conventional empirical potentials. However, the transferability of MLIP to systems outside the training set pose ...