Publication

De l'usage des protons hyperpolarisés pour augmenter la sensibilité de la RMN

Aurélien Bornet
2015
EPFL thesis
Abstract

Nuclear Magnetic Resonance (NMR) has become an inescapable technique for spectroscopic identification. Its main advantage comes from the sensitivity of NMR active nuclei embedded in a molecule to their chemical environment. NMR is also used daily in medical imaging. Magnetic Resonance Imaging (MRI) is not only remarkably versatile, but has the precious advantage of being non-invasive; moreover, the range of radiofrequency used implies that MRI deposit a limited amount of energy in tissues under investigation. Nevertheless, compared to other spectroscopic methods, NMR suffers from a relative lack of sensitivity. Indeed as the NMR transitions are low in energy, the difference of populations between the levels involved, known as polarization, is extremely low. The NMR signal, which is directly proportional to this polarization, is thus many orders of magnitude inferior to the theoretical maximum at full polarization. Dynamic Nuclear Polarization (DNP) allows one to circumvent this disadvantage by transferring the high electron spin polarization to the nuclear spins. This transfer happens via microwave irradiation under optimized conditions. The method has been constantly developed since the ‘fifties. A substantial breakthrough was achieved in 2003 by Golman, Ardenkjaer-Larsen and their collaborators. They proposed to dissolve a sample that has been hyperpolarized at low temperature (at about 1 K) in order to inject it into an animal, or, in fine, into a human patient, and to follow its bio-distribution and eventual metabolic conversion by MRI. This technique, called Dissolution-DNP (D-DNP), allows a signal increase on the order of 10'000, opening the way to many new experimental possibilities. Research in Dissolution-DNP was largely oriented toward the optimization of 13C polarization because of its long lifetimes. In the course of this Thesis, an alternative way that takes advantage of the proton (1H) polarization will be explored. Protons have the advantage that they can be polarized to a higher levels in a shorter time compared to 13C. Unfortunately, once ejected from the polarizer, in solution and at room temperature, the high proton magnetization will be short-lived compared to 13C. Along the chapters of this Thesis, different approaches will be proposed to maximize the advantages of 1H polarization, while minimizing its inconveniences. It is possible to use a standard NMR technique, known as Cross-Polarization (CP), to transfer the abundant magnetization of hyperpolarized protons to other nuclei like 13C, using suitable radiofrequency pulse sequences. The advantages of the 1H polarization are exploited inside the polarizer, while the interesting properties of 13C are put to use after dissolution. Still, it is also possible to observe directly the proton signal after dissolution. This can be extremely interesting, especially in the context of drug screening for pharmaceutical research. Two examples of such methods will be described. Finally, the use of hyperpolarized 1H signals after dissolution can be greatly improved if their relaxation rates could be attenuated. A first way of doing this, consisting in removing the paramagnetic species by filtration, will be explored. The use of Long-Lived States (LLS) will also be presented.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related concepts (32)
Nuclear magnetic resonance
Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are perturbed by a weak oscillating magnetic field (in the near field) and respond by producing an electromagnetic signal with a frequency characteristic of the magnetic field at the nucleus. This process occurs near resonance, when the oscillation frequency matches the intrinsic frequency of the nuclei, which depends on the strength of the static magnetic field, the chemical environment, and the magnetic properties of the isotope involved; in practical applications with static magnetic fields up to ca.
Nuclear magnetic resonance spectroscopy
Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique to observe local magnetic fields around atomic nuclei. This spectroscopy is based on the measurement of absorption of electromagnetic radiations in the radio frequency region from roughly 4 to 900 MHz. Absorption of radio waves in the presence of magnetic field is accompanied by a special type of nuclear transition, and for this reason, such type of spectroscopy is known as Nuclear Magnetic Resonance Spectroscopy.
Magnetic resonance imaging
Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to form pictures of the anatomy and the physiological processes of the body. MRI scanners use strong magnetic fields, magnetic field gradients, and radio waves to generate images of the organs in the body. MRI does not involve X-rays or the use of ionizing radiation, which distinguishes it from computed tomography (CT) and positron emission tomography (PET) scans.
Show more
Related publications (159)

Single Chip Dynamic Nuclear Polarization Microsystems

Nergiz Sahin Solmaz

Nuclear magnetic resonance (NMR) methods are powerful tools employed in many fields, including physics, chemistry, material science, biology, and medicine. The use of NMR methodologies in an even wider range of applications is often hindered by the relativ ...
EPFL2023

Fast, Broad-Band Magnetic Resonance Spectroscopy with Diamond Widefield Relaxometry

Mayeul Sylvain Chipaux, Hoda Shirzad

We present an alternative to conventional Electron the use of bulky magnets and magnetron equipment, we use the photoluminescence of an ensemble of Nitrogen-Vacancy centers at the surface of a diamond. Monitoring their relaxation time (or T1), we detected ...
AMER CHEMICAL SOC2023

Multi-sample/multi-nucleus parallel polarization and monitoring enabled by a fluid path technology compatible cryogenic probe for dissolution dynamic nuclear polarization

Andrea Capozzi, Jean-Noël Hyacinthe, Thanh Phong Kevin Lê

Low throughput is one of dissolution Dynamic Nuclear Polarization (dDNP) main shortcomings. Especially for clinical and preclinical applications, where direct 13C nuclei polarization is usually pursued, it takes hours to generate one single hyperpolarized ...
2023
Show more
Related MOOCs (25)
Basic Steps in Magnetic Resonance
A MOOC to discover basic concepts and a wide range of intriguing applications of magnetic resonance to physics, chemistry, and biology
Fundamentals of Biomedical Imaging: Magnetic Resonance Imaging (MRI)
Learn about magnetic resonance, from the physical principles of Nuclear Magnetic Resonance (NMR) to the basic concepts of image reconstruction (MRI).
Fundamentals of Biomedical Imaging: Magnetic Resonance Imaging (MRI)
Learn about magnetic resonance, from the physical principles of Nuclear Magnetic Resonance (NMR) to the basic concepts of image reconstruction (MRI).
Show more