Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Electrical measurement is a widely used technique for the characterization of nanofluidic devices. The electrical conductivity of electrolytes is known to be dependent on temperature. However, the similarity of the temperature sensitivity of the electrical conductivity for bulk and nanochannels has not been validated. In this work, we present the results from experimental measurements as well as analytical modeling that show the significant difference between bulk and nanoscale. The temperature sensitivity of the electrical conductance of nanochannel is higher at low ionic concentration where the nanofluidic transport is governed by the electrostatic effects from the wall. Neglecting this effect can result in significant errors for high temperature measurements. Additionally, the temperature sensitivity of the nanochannel conductance allows to measure the enthalpy change of surface reactions at low ionic concentrations.
Jürgen Brugger, Lorenz Hagelüken
,