Volatility-hygroscopicity tandem differential mobility analyzer measurements were used to infer the composition of sub-100nm diameter Southern Ocean marine aerosols at Cape Grim in November and December 2007. This study focuses on a short-lived high sea spray aerosol (SSA) event on 7-8 December with two externally mixed modes in the Hygroscopic Growth Factor (HGF) distributions (90% relative humidity (RH)), one at HGF>2 and another at HGF similar to 1.5. The particles with HGF>2 displayed a deliquescent transition at 73-75% RH and were nonvolatile up to 280 degrees C, which identified them as SSA particles with a large inorganic sea-salt fraction. SSA HGFs were 3-13% below those for pure sea-salt particles, indicating an organic volume fraction (OVF) of up to 11-46%. Observed high inorganic fractions in sub-100nm SSA is contrary to similar, earlier studies. HGFs increased with decreasing particle diameter over the range 16-97nm, suggesting a decreased OVF, again contrary to earlier studies. SSA comprised up to 69% of the sub-100nm particle number, corresponding to concentrations of 110-290cm(-3). Air mass back trajectories indicate that SSA particles were produced 1500km, 20-40h upwind of Cape Grim. Transmission electron microscopy (TEM) and X-ray spectrometry measurements of sub-100nm aerosols collected from the same location, and at the same time, displayed a distinct lack of sea salt. Results herein highlight the potential for biases in TEM analysis of the chemical composition of marine aerosols.
Ardemis Anoush Boghossian, Melania Reggente, Mohammed Mouhib, Fabian Fischer, Hanxuan Wang, Charlotte Elisabeth Marie Roullier, Patricia Brandl
Florian Frédéric Vincent Breider, Sylvain Coudret