Channel-Mediated Lactate Release by K+-Stimulated Astrocytes
Related publications (47)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
There is growing evidence that astrocytes are involved in the neuropathology of major depression. In particular, decreases in glial cell density observed in the cerebral cortex of individuals with major depressive disorder are accompanied by a reduction of ...
The brain has very high energy demands that are mainly met by the circulating blood glucose to ensure its proper functioning. Thus, it is not surprising that though the human brain weighs only 2- 3% of the body weight, it consumes approximately 25% of tota ...
A tight coupling exists between synaptic activity and glucose utilization by astrocytes. Metabolic cooperation between neurons and astrocytes mediates this coupling. During synaptic activation, glutamate that is released in the synaptic cleft as a neurotra ...
Glutamate dehydrogenase (GDH), encoded by GLUD1, participates in the breakdown and synthesis of glutamate, the main excitatory neurotransmitter. In the CNS, besides its primary signaling function, glutamate is also at the crossroad of metabolic and neurotr ...
Astrocytes are the main neural cell type responsible for the maintenance of brain homeostasis. They form highly organized anatomical domains that are interconnected into extensive networks. These features, along with the expression of a wide array of recep ...
Astrocytes play an important role in nervous system homeostasis. In particular, they contribute to the regulation of local energy metabolism and to oxidative stress defence. In previous experiments, we showed that long-term treatment with interleukin 1alph ...
Cerebral metabolism is compartmentalized between neurons and glia. Although glial glycolysis is thought to largely sustain the energetic requirements of neurotransmission while oxidative metabolism takes place mainly in neurons, this hypothesis is matter o ...
In recent years, previously unsuspected roles of astrocytes have been revealed, largely owing to the development of new tools enabling their selective study in situ. These exciting findings add to the large body of evidence demonstrating that astrocytes pl ...
The present invention concerns a new pharmaceutical composition comprising an antagonist and a co-agonist of the N-methyl-D-aspartate-type glutamate receptor (NMDAR). The inventors found that the co-administration of these two compounds effectively inhibit ...
Robberechts Q, Wijnants M, Giugliano M, De Schutter E. Longterm depression at parallel fiber to Golgi cell synapses. J Neurophysiol 104: 3413-3423, 2010. First published September 22, 2010; doi:10.1152/jn.00030.2010. Golgi cells (GoCs) are the primary inhi ...