Semiconductor films prepd. by electrostatic layer-by-layer deposition can be used to fabricate dye-sensitized solar cells after treatment at 150°. However, the resulting photocurrent is less than when the film is sintered at 500°. The difference in short-circuit current is a factor of 2.2 with the Ru-based dye N719 and is 3.5 with the org. dye D5. The photocurrent at a given wavelength is proportional to the light-harvesting efficiency, charge injection efficiency and charge collection efficiency. Sintered films take up >60% more of either dye than un-sintered films and therefore absorb more photons. Electron injection is hindered in un-sintered films due to a conduction band edge potential 100 mV more neg. than in a sintered electrode. Addnl. injection effects could be due to adsorption of the dye to polymer rather than to TiO2 in un-sintered films, although the measurement results were inconclusive. Kinetic studies show electron transport times an order of magnitude faster then electron lifetimes in both sintered and un-sintered electrodes. Also, a Li+ insertion expt. shows that both films have good elec. connectivity between TiO2 nanoparticles. Un-sintered films thus exhibit efficient charge transport despite the presence of polymer and the lack of heat treatment to induce necking.
Lei Zhang, Ulf Anders Hagfeldt, Yan Hao, Yasemin Saygili
Shaik Mohammed Zakeeruddin, Antonio Abate, Yelin Hu, Yiming Cao