Visible light driven hydrogen production from a photo-active cathode based on a molecular catalyst and organic dye-sensitized p-type nanostructured NiO
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The tandem photoelectochemical (PEC) cell based on oxide semiconductors for water splitting offers a potentially inexpensive route for solar hydrogen generation. At the heart of the device, a nanostructured photoanode for water oxidation is connected in se ...
Photoelectrochemical water-splitting devices, which use solar energy to convert water into hydrogen and oxygen, have been investigated for decades. Multijunction designs are most efficient, as they can absorb enough solar energy and provide sufficient free ...
Due to the limiting amount of fossil fuel available and to the continuous growth of the world energy consumption, it becomes important to find alternative energy sources. Hydrogen produced by the photoelectrolysis of water is a perfect candidate as a clean ...