Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Changes in the spin configuration of atomically thin, magnetic van der Waals multilayers can cause drastic modifications in their opto-electronic properties. Conversely, the opto-electronic response of these systems provides information about the magnetic ...
Scale-invariant magnetic anisotropy in RuCl(3)has been revealed through measurements of its magnetotropic coefficient, providing evidence for a high degree of exchange frustration that favours the formation of a spin liquid state. In RuCl3, inelastic neutr ...
Two-dimensional (2D) materials have attracted increasing attention over the last decade owing to their remarkable mechanical, electrical and optical properties. Following the groundbreaking discovery of graphene, a plethora of other atomically-thin materia ...
Quasicrystals are aperiodically ordered structures with unconventional rotational symmetry. Their peculiar features have been explored in photonics to engineer bandgaps for light waves. Magnons (spin waves) are collective spin excitations in magnetically o ...
For understanding magnonic materials the fundamental characterization of their frequency response is essential. However, determining full dispersion relations and real space wavelength measurements are challenging and time-consuming tasks. We present an ap ...
We report broadband spectroscopy and numerical analysis by which we explore propagating spin waves in a magnetic bilayer consisting of a 23-nm thick permalloy film deposited on 130-nm thick Y_3Fe_5O_12. In the bilayer, we observe a characteristic mode that ...
Collective spin excitations can propagate in magnetically ordered materials in the form of waves. These so-called spin waves (SWs) or magnons are promising for low-power beyond-CMOS information processing, which does not rely anymore on the lossy movement ...
By means of the plane-wave method we study spin-wave dynamics in two-dimensional bicomponent magnonic crystals based on a squeezed hexagonal lattice and consist of a permalloy thin film with cobalt inclusions. We explore the dependence of a spin-wave frequ ...
Magnetic materials can host skyrmions, which are topologically non-trivial spin textures. In chiral magnets with cubic lattice symmetry, all previously observed skyrmion phases require thermal fluctuations to become thermodynamically stable in bulk materia ...
Magnonic crystals are interesting for spin-wave based data processing. We investigate one-dimensional magnonic crystals (1D MCs) consisting of bistable Co20Fe60B20 nanostripes separated by 75 nm wide air gaps. By adjusting the magnetic history, we program ...