Publication

Magnetization of semiconductor quantum dots

Dirk Grundler
2002
Journal paper
Abstract

We present experimental studies of the magnetization of electrons in semiconductorquantum dots. Starting from a modulation-doped AlGaAs/GaAs heterostructure an array of dots was patterned by laser-interference lithography and deep mesa etching. The quantum-dot array was integrated into a highly sensitive micromechanical cantilever magnetometer. At a temperature of 0.3 K we observe pronounced oscillations in the magnetization. With regard to their periodicity and temperature dependence they differ from the de Haas–van Alphen effect observed in a two-dimensional electron system. We find that the magnetization calculated from the single-particle Fock–Darwin energies of a quantum dot does not reproduce the experiment. From this we conclude that the electronic ground state of the dots is strongly influenced by electron–electron interaction.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.