Spin-wave localization between nearest and next-nearest neighboring holes in an antidot lattice
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
A method for nuclear magnetic resonance (NMR) spectroscopy of a sample comprises preparation of the sample and carrying out an NMR spectroscopy measurement. Preparation includes excitation of long lived coherences (LLC) between the singlet state S0 and the ...
We report neutron inelastic scattering measurements on the normal and superconducting states of single-crystalline Cs0.8Fe1.9Se2. Consistent with previous measurements on RbxFe2−ySe2, we observe two distinct spin excitation signals: (i) spin-wave excitatio ...
The ground-state properties of the S = 1/2 transverse-field Ising model on the checkerboard lattice are studied using linear spin-wave theory. We consider the general case of different couplings between nearest neighbors (J(1)) and next-to-nearest neighbor ...
Nuclear magnetic resonance (NMR) was discovered in the first half of the 20th century. Today, neither analytical chemistry without NMR spectroscopy nor medical diagnostics without magnetic resonance imaging (MRI) could be imagined. A magnetic resonance sig ...
This paper discusses nanomagnetic structures enabling the manipulation of propagating spin waves. We address in particular how domain walls, or more generally speaking inhomogeneous spin configurations, enhance the control of spin-wave transmission and the ...
Magnetic excitations in copper pyrimidine dinitrate, a spin-1/2 antiferromagnetic chain with alternating g-tensor and Dzyaloshinskii-Moriya interactions that exhibits a field-induced spin gap, are probed by means of pulsed-field electron-spin-resonance spe ...
The excitation of spin waves by a microwave current injected into a coplanar waveguide with finite-width ground lines on a continuous Permalloy film is investigated both experimentally and numerically. Phase sensitive micro-focused Brillouin light scatteri ...
All-electrical spin-wave spectroscopy, Brillouin light scattering, as well as the magneto-optical Kerr effect are combined to study spin-wave propagation through a magnetic antidot lattice nanopatterned into a Ni80Fe20 thin film. The propagation velocities ...
All-electrical spin-wave spectroscopy and frequency-resolved magneto-optical Kerr-effect measurements are combined to study spin waves propagating through a magnetic antidot lattice nanopatterned from a Ni80Fe20 thin film. Spin waves are injected from a pl ...
Detailed spin-wave spectra of magnetoelectric LiNiPO4 have been measured by neutron scattering at low temperatures in the commensurate (C) antiferromagnetic (AF) phase below T-N=20.8 K. An anomalous shallow minimum is observed at the modulation vector of t ...