Publication

Shared Frontend for Manycore Server Processors

Ilknur Cansu Kaynak
2015
EPFL thesis
Abstract

Instruction-supplymechanisms, namely the branch predictors and instruction prefetchers, exploit recurring control flow in an application to predict the application’s future control flow and provide the core with a useful instruction stream to execute in a timely manner. Consequently, instruction-supplymechanisms aggressively incorporate control-flow condition, target, and instruction cache access information (i.e., control-flow metadata) to improve performance. Despite their high accuracy, thus performance benefits, these predictors lead to major silicon provisioning due to their metadata storage overhead. The storage overhead is further aggravated by the increasing core counts and more complex software stacks leading to major metadata redundancy: (i) across cores as the metadata of cores running a given server workload significantly overlap, (ii) within a core as the control-flowmetadata maintained by disparate instruction-supplymechanisms overlap significantly. In this thesis, we identify the sources of redundancy in the instruction-supply metadata and provide mechanisms to share metadata across cores and unify metadata for disparate instruction-supply mechanisms. First, homogeneous server workloads running on many cores allow for metadata sharing across cores, as each core executes the same types of requests and exhibits the same control flow. Second, the control-flow metadata maintained by individual instruction-supply mechanisms, despite being at different granularities (i.e., instruction vs. instruction block), overlap significantly, allowing for unifying their metadata. Building on these two observations, we eliminate the storage overhead stemming from metadata redundancy inmanycore server processors through a specialized shared frontend, which enables sharing metadata across cores and unifying metadata within a core without sacrificing the performance benefits provided by private and disparate instruction-supply mechanisms.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (40)
Metadata
Metadata (or metainformation) is "data that provides information about other data", but not the content of the data, such as the text of a message or the image itself. There are many distinct types of metadata, including: Descriptive metadata – the descriptive information about a resource. It is used for discovery and identification. It includes elements such as title, abstract, author, and keywords. Structural metadata – metadata about containers of data and indicates how compound objects are put together, for example, how pages are ordered to form chapters.
Multi-core processor
A multi-core processor is a microprocessor on a single integrated circuit with two or more separate processing units, called cores, each of which reads and executes program instructions. The instructions are ordinary CPU instructions (such as add, move data, and branch) but the single processor can run instructions on separate cores at the same time, increasing overall speed for programs that support multithreading or other parallel computing techniques.
Metadata standard
A metadata standard is a requirement which is intended to establish a common understanding of the meaning or semantics of the data, to ensure correct and proper use and interpretation of the data by its owners and users. To achieve this common understanding, a number of characteristics, or attributes of the data have to be defined, also known as metadata. Metadata is often defined as data about data.
Show more
Related publications (85)

Micro BTB: A High Performance and Storage Efficient Last-Level Branch Target Buffer for Servers

Vishal Gupta

High-performance branch target buffers (BTBs) and the L1I cache are key to high-performance front-end. Modern branch predictors are highly accurate, but with an increase in code footprint in modern-day server workloads, BTB and L1I misses are still frequen ...
ASSOC COMPUTING MACHINERY2022

Micro-architectural Analysis of Database Workloads

Utku Sirin

Database workloads have significantly evolved in the past twenty years. Traditional database systems that are mainly used to serve Online Transactional Processing (OLTP) workloads evolved into specialized database systems that are optimized for particular ...
EPFL2021

How Many CPU Cores is an FPGA Worth? Lessons Learned from Accelerating String Sorting on a CPU-FPGA System

Paolo Ienne, Mikhail Asiatici, Damian Maiorano

String sorting is a fundamental kernel of string matching and database index construction; yet, it has not been studied as extensively as fixed-length keys sorting. Because processing variable-length keys in hardware is challenging, it is no surprise that ...
SPRINGER2021
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.