Differential coral bleaching—Contrasting the activity and response of enzymatic antioxidants in symbiotic partners under thermal stress
Related publications (51)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Reactive oxygen species play a key role in cell signalling and oxidative stress mechanisms, therefore, sensing their production by living organisms is of fundamental interest. Here we describe a novel biosensing method for extracellular detection of endoge ...
Ion micro-probe imaging of the aragonite skeleton of Pavona clavus, a massive reef-building coral, shows that magnesium and strontium are distributed very differently. In contrast to strontium, the distribution of magnesium is strongly correlated with the ...
Unicellular photosynthetic dinoflagellates of the genus Symbiodinium are the most common endosymbionts of reef-building scleractinian corals, living in a symbiotic partnership known to be highly susceptible to environmental changes such as hyperthermic str ...
Metabolic interactions with endosymbiotic photosynthetic dinoflagellate Symbiodinium spp. are fundamental to reef-building corals (Scleractinia) thriving in nutrient-poor tropical seas. Yet, detailed understanding at the single-cell level of nutrient assim ...
Sustaining in vitro cultures of endosymbiotic dinoflagellates in the genus Symbiodinium is important, addressing questions relating to Symbiodinium function and Symbiodinium dependent host fitness. Difficulties in establishing representative Symbiodinium c ...
Assimilation of inorganic nitrogen from nutrient-poor tropical seas is an essential challenge for the endosymbiosis between reef-building corals and dinoflagellates. Despite the clear evidence that reef-building corals can use ammonium as inorganic nitroge ...
Unicellular photosynthetic algae (dinoflagellate) from the genus Symbiodinium live in mutualistic symbiosis with reef-building corals. Cultured Symbiodinium sp. (clade C) were exposed to a range of environmental stresses that included elevated temperatures ...
Background: Mass coral bleaching is increasing in scale and frequency across the world's coral reefs and is being driven primarily by increased levels of thermal stress arising from global warming. In order to understand the impacts of projected climate ch ...
Exposure to heat stress has been recognized as one of the major factors leading to the breakdown of the coral-alga symbiosis and coral bleaching. Here, we describe the presence of three new cytochrome P450 (CYP) genes from the reef-building coral endosymbi ...
Uptake of anthropogenic CO2 by the oceans is altering seawater chemistry with potentially serious consequences for coral reef ecosystems due to the reduction of seawater pH and aragonite saturation state (Omega(arag)) The objectives of this long-term study ...