Simultaneous initiation and growth of multiple radial hydraulic fractures from a horizontal wellbore
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Understanding fluid flow in rough fractures is of high importance to large scale geologic processes and to most anthropogenic geo-energy activities. Here, we conducted fluid transport experiments on Carrara marble fractures with a novel customized surface ...
Geo-energy is a comprehensive term used to describe any form of energy that comes from the Earth. This includes hydrocarbons such as gas, oil, and coal, but also geothermal energy (shallow and deep). The focus of this thesis is on Enhanced Geothermal Syste ...
The propagation of fluid driven fractures is used in a number of industrial applications (well stimulation of unconventional reservoirs, development of deep geothermal systems) but also occurs naturally (magmatic dyke intrusion). While the mechanics of hyd ...
Well completion for oil and gas, geothermal energy as well as CO2 storage sometimes require stimulation to achieve economical fluid flow rates (for both injector and producer wells). Predicting the growth of fluid-driven fractures in geological systems is ...
The stress state of the subsurface has been shown to have an influence on a number of key processes. For example, the criticality of the stress state indicates how large stress changes need to be before a fault begins to slip, the mean effective stress con ...
Hydraulic fracturing has a wide range of applications. It is widely studied and modelled to better understand all the possible situations and foresee possible advantage in the industry. When it comes to modelling, the struggle of being able to simulate com ...
Hydraulic stimulation is an engineering technique whose aim is to enhance the permeability of fractured rock masses at depths ranging from one to five kilometers. It consists in the injection of fluid at sufficiently high pressure in order to shear pre-exi ...
The configuration of a hydraulic fracture (HF) propagating perpendicular to the isotropy plane of a transversely isotropic (TI) material is encountered in most sedimentary basins. We account for both elastic and fracture toughness anisotropy, and investiga ...
Enhanced Geothermal Systems (EGS) allow for worldwide geothermal electricity production. They target deep (3-5 km), fractured rock reservoirs whose permeability is artificially increased through hydraulic stimulations (fluid injections). The injections mod ...
Enhanced Geothermal Systems represent a major field of study in the context of renewable energy resources. To create extractable energy from those reservoirs, a high enough fluid flow rate for production needs to be achieved. This fluid flow rate is direct ...