Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We build wavelet-like functions based on a parametrized family of pseudo-differential operators Lv that satisfy some admissibility and scalability conditions. The shifts of the generalized B-splines, which are localized versions of the Green func ...
In this work, we study the effect of inserting spatially local temporal adaptivity to motion compensated frame adaptive transforms for video coding. Motion compensation aligns the temporal wavelet decomposition along motion trajectories. However, valid tra ...
I. Introduction Wavelets are the result of collective efforts that recognized common threads between ideas and concepts that had been independently developed and investigated by distinct research communities. They provide a unifying framework for decompos ...
We present a new family of two-dimensional and three-dimensional orthogonal wavelets which uses quincunx sampling. The orthogonal refinement filters have a simple analytical expression in the Fourier domain as a function of the order λ, which may be nonint ...
We provide an overview of spline and wavelet techniques with an emphasis on applications in pattern recognition. The presentation is divided in three parts. In the first one, we argue that the spline representation is ideally suited for all processing task ...
We present here an explicit time-domain representation of any compactly supported dyadic scaling function as a sum of harmonic splines. The leading term in the decomposition corresponds to the fractional splines, a recent, continuous-order generalization o ...
Splines, which were invented by Schoenberg more than fifty years ago, constitute an elegant framework for dealing with interpolation and discretization problems. They are widely used in computer-aided design and computer graphics, but have been neglected i ...
The purpose of this presentation is to describe a recent family of basis functions—the fractional B-splines—which appear to be intimately connected to fractional calculus. Among other properties, we show that they are the convolution kernels that link the ...
We propose a construction of new wavelet-like bases that are well suited for the reconstruction and processing of optically generated Fresnel holograms recorded on CCD-arrays. The starting point is a wavelet basis of L2 to which we apply a unitar ...
We present an explicit formula for B-spline convolution kernels; these are defined as the convolution of several B-splines of variable widths hi and degrees ni. We apply our results to derive spline-convolution-based algorithms for two closely related prob ...