Publication

Quantitative $ L ^{ 2 } $ Approximation Error of a Probability Density Estimate Given by It Samples

Michaël Unser, Thierry Blu
2004
Conference paper
Abstract

We present a new result characterized by an exact integral expression for the approximation error between a probability density and an integer shift invariant estimate obtained from its samples. Unlike the Parzen window estimate, this estimate avoids recomputing the complete probability density for each new sample: only a few coefficients are required making it practical for real-time applications. We also show how to obtain the exact asymptotic behavior of the approximation error when the number of samples increases and provide the trade-off between the number of samples and the sampling step size.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.